
Wetzel’s Problem and the Continuum Hypothesis

Lawrence C. Paulson

March 17, 2025

Abstract

Let F be a set of analytic functions on the complex plane such that,
for each z ∈ C, the set {f(z) | f ∈ F} is countable; must then F itself
be countable? The answer is yes if the Continuum Hypothesis is false,
i.e., if the cardinality of R exceeds ℵ1. But if CH is true then such an
F , of cardinality ℵ1, can be constructed by transfinite recursion.

The formal proof illustrates reasoning about complex analysis (an-
alytic and homomorphic functions) and set theory (transfinite cardi-
nalities) in a single setting. The mathematical text comes from Proofs
from THE BOOK [1, pp. 137–8], by Aigner and Ziegler.

1

Contents
1 Wetzel’s Problem, Solved by Erdös 3

1.0.1 When the continuum hypothesis is false 3
1.0.2 When the continuum hypothesis is true 4

Acknowledgements The author was supported by the ERC Advanced
Grant ALEXANDRIA (Project 742178) funded by the European Research
Council. Thanks also to Manuel Eberl for advice on proving a function to
be holomorphic.

2

1 Wetzel’s Problem, Solved by Erdös
Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. (Springer,
2018). Chapter 19: Sets, functions, and the continuum hypothesis Theorem
5 (pages 137–8)
theory Wetzels-Problem imports

HOL−Complex-Analysis.Complex-Analysis ZFC-in-HOL.General-Cardinals

begin

definition Wetzel :: (complex ⇒ complex) set ⇒ bool
where Wetzel ≡ λF . (∀ f∈F . f analytic-on UNIV) ∧ (∀ z. countable((λf . f z) ‘

F))

1.0.1 When the continuum hypothesis is false
proposition Erdos-Wetzel-nonCH :

assumes W : Wetzel F and NCH : C-continuum > ℵ1
shows countable F

proof −
have ∃ z0 . gcard ((λf . f z0) ‘ F) ≥ ℵ1 if uncountable F
proof −

have gcard F ≥ ℵ1
using that uncountable-gcard-ge by force

then obtain F ′ where F ′ ⊆ F and F ′: gcard F ′ = ℵ1
by (meson Card-Aleph subset-smaller-gcard)

then obtain ϕ where ϕ: bij-betw ϕ (elts ω1) F ′

by (metis TC-small eqpoll-def gcard-eqpoll)
define S where S ≡ λα β. {z. ϕ α z = ϕ β z}
have co-S : gcard (S α β) ≤ ℵ0 if α ∈ elts β β ∈ elts ω1 for α β
proof −

have ϕ α holomorphic-on UNIV ϕ β holomorphic-on UNIV
using W ‹F ′ ⊆ F› unfolding Wetzel-def
by (meson Ord-ω1 Ord-trans ϕ analytic-imp-holomorphic bij-betwE subsetD

that)+
moreover have ϕ α 6= ϕ β

by (metis Ord-ω1 Ord-trans ϕ bij-betw-def inj-on-def mem-not-refl that)
ultimately have countable (S α β)

using holomorphic-countable-equal-UNIV unfolding S-def by blast
then show ?thesis

using countable-imp-g-le-Aleph0 by blast
qed
define SS where SS ≡

⊔
β ∈ elts ω1 .

⊔
α ∈ elts β. S α β

have F ′-eq: F ′ = ϕ ‘ elts ω1
using ϕ bij-betw-imp-surj-on by auto

have §:
∧
β. β ∈ elts ω1 =⇒ gcard (

⋃
α∈elts β. S α β) ≤ ω

by (metis Aleph-0 TC-small co-S countable-UN countable-iff-g-le-Aleph0
less-ω1-imp-countable)

have gcard SS ≤ gcard ((λβ.
⋃
α∈elts β. S α β) ‘ elts ω1) ⊗ ℵ0

3

apply (simp add: SS-def)
by (metis (no-types, lifting) § TC-small gcard-Union-le-cmult imageE)

also have . . . ≤ ℵ1
proof (rule cmult-InfCard-le)

show gcard ((λβ.
⋃
α∈elts β. S α β) ‘ elts ω1) ≤ ω1

using gcard-image-le by fastforce
qed auto
finally have gcard SS ≤ ℵ1 .
with NCH obtain z0 where z0 /∈ SS

by (metis Complex-gcard UNIV-eq-I less-le-not-le)
then have inj-on (λx. ϕ x z0) (elts ω1)

apply (simp add: SS-def S-def inj-on-def)
by (metis Ord-ω1 Ord-in-Ord Ord-linear)

then have gcard ((λf . f z0) ‘ F ′) = ℵ1
by (smt (verit) F ′ F ′-eq gcard-image imageE inj-on-def)

then show ?thesis
by (metis TC-small ‹F ′ ⊆ F› image-mono subset-imp-gcard-le)

qed
with W show ?thesis

unfolding Wetzel-def by (meson countable uncountable-gcard-ge)
qed

1.0.2 When the continuum hypothesis is true
lemma Rats-closure-real2 : closure (�×�) = (UNIV ::real set)×(UNIV ::real set)

by (simp add: Rats-closure-real closure-Times)

proposition Erdos-Wetzel-CH :
assumes CH : C-continuum = ℵ1
obtains F where Wetzel F and uncountable F

proof −
define D where D ≡ {z. Re z ∈ � ∧ Im z ∈ �}
have Deq: D = (

⋃
x∈�.

⋃
y∈�. {Complex x y})

using complex.collapse by (force simp: D-def)
with countable-rat have countable D

by blast
have infinite D

unfolding Deq
by (intro infinite-disjoint-family-imp-infinite-UNION Rats-infinite) (auto simp:

disjoint-family-on-def)
have ∃w. Re w ∈ � ∧ Im w ∈ � ∧ norm (w − z) < e if e > 0 for z and e::real
proof −

obtain x y where x∈� y∈� and xy: dist (x,y) (Re z, Im z) < e
using ‹e > 0 › Rats-closure-real2 unfolding closure-approachable set-eq-iff
by blast

moreover have dist (x,y) (Re z, Im z) = norm (Complex x y − z)
by (simp add: norm-complex-def norm-prod-def dist-norm)

ultimately show ∃w. Re w ∈ � ∧ Im w ∈ � ∧ norm (w − z) < e
by (metis complex.sel)

4

qed
then have cloD: closure D = UNIV

by (auto simp: D-def closure-approachable dist-complex-def)
obtain ζ where ζ: bij-betw ζ (elts ω1) (UNIV ::complex set)

by (metis Complex-gcard TC-small assms eqpoll-def gcard-eqpoll)
define inD where inD ≡ λβ f . (∀α ∈ elts β. f (ζ α) ∈ D)
define Φ where Φ ≡ λβ f . f β analytic-on UNIV ∧ inD β (f β) ∧ inj-on f (elts

(succ β))
have ind-step: ∃ h. Φ γ ((restrict f (elts γ))(γ:=h))

if γ: γ ∈ elts ω1 and ∀β ∈ elts γ. Φ β f for γ f
proof −

have f : ∀β ∈ elts γ. f β analytic-on UNIV ∧ inD β (f β)
using that by (auto simp: Φ-def)

have inj: inj-on f (elts γ)
using that by (simp add: Φ-def inj-on-def) (meson Ord-ω1 Ord-in-Ord

Ord-linear)
obtain h where h analytic-on UNIV inD γ h (∀β ∈ elts γ. h 6= f β)
proof (cases finite (elts γ))

case True
then obtain η where η: bij-betw η {..<card (elts γ)} (elts γ)

using bij-betw-from-nat-into-finite by blast
define g where g ≡ f o η
define w where w ≡ ζ o η
have gf : ∀ i<card (elts γ). h 6= g i =⇒ ∀β∈elts γ. h 6= f β for h

using η by (auto simp: bij-betw-iff-bijections g-def)
have ∗∗: ∃ h. h analytic-on UNIV ∧ (∀ i<n. h (w i) ∈ D ∧ h (w i) 6= g i (w

i))
if n ≤ card (elts γ) for n
using that

proof (induction n)
case 0
then show ?case

using analytic-on-const by blast
next

case (Suc n)
then obtain h where h analytic-on UNIV and hg: ∀ i<n. h(w i) ∈ D ∧

h(w i) 6= g i (w i)
using Suc-leD by blast

define p where p ≡ λz.
∏

i<n. z − w i
have p0 : p z = 0 ←→ (∃ i<n. z = w i) for z

unfolding p-def by force
obtain d where d: d ∈ D − {g n (w n)}

using ‹infinite D› by (metis ex-in-conv finite.emptyI infinite-remove)
define h ′ where h ′ ≡ λz. h z + p z ∗ (d − h (w n)) / p (w n)
have h ′-eq: h ′ (w i) = h (w i) if i<n for i

using that by (force simp: h ′-def p0)
show ?case
proof (intro exI strip conjI)

have nless: n < card (elts γ)

5

using Suc.prems Suc-le-eq by blast
with η have η n 6= η i if i<n for i

using that unfolding bij-betw-iff-bijections
by (metis lessThan-iff less-not-refl order-less-trans)

with ζ η γ have pwn-nonzero: p (w n) 6= 0
apply (clarsimp simp: p0 w-def bij-betw-iff-bijections)
by (metis Ord-ω1 Ord-trans nless lessThan-iff order-less-trans)

then show h ′ analytic-on UNIV
unfolding h ′-def p-def by (intro analytic-intros ‹h analytic-on UNIV ›)

fix i
assume i < Suc n
then have §: i < n ∨ i = n

by linarith
then show h ′ (w i) ∈ D

using h ′-eq hg d h ′-def pwn-nonzero by force
show h ′ (w i) 6= g i (w i)

using § h ′-eq hg h ′-def d pwn-nonzero by fastforce
qed

qed
show ?thesis

using ∗∗ [OF order-refl] η that gf
by (simp add: w-def bij-betw-iff-bijections inD-def) metis

next
case False
then obtain η where η: bij-betw η (UNIV ::nat set) (elts γ)

by (meson γ countable-infiniteE ′ less-ω1-imp-countable)
then have η-inject [simp]: η i = η j ←→ i=j for i j

by (simp add: bij-betw-imp-inj-on inj-eq)
define g where g ≡ f o η
define w where w ≡ ζ o η
then have w-inject [simp]: w i = w j ←→ i=j for i j

by (smt (verit) Ord-ω1 Ord-trans UNIV-I η γ ζ bij-betw-iff-bijections
comp-apply)

define p where p ≡ λn z.
∏

i<n. z − w i
define q where q ≡ λn.

∏
i<n. 1 + norm (w i)

define h where h ≡ λn ε z.
∑

i<n. ε i ∗ p i z
define BALL where BALL ≡ λn ε. ball (h n ε (w n)) (norm (p n (w n)) /

(fact n ∗ q n))
— The demonimator above is the key to keeping the epsilons small

define DD where DD ≡ λn ε. D ∩ BALL n ε − {g n (w n)}
define dd where dd ≡ λn ε. SOME x. x ∈ DD n ε
have p0 : p n z = 0 ←→ (∃ i<n. z = w i) for z n

unfolding p-def by force
have [simp]: p n (w i) = 0 if i<n for i n

using that by (simp add: p0)
have q-gt0 : 0 < q n for n

unfolding q-def by (smt (verit) norm-not-less-zero prod-pos)
have DD n ε 6= {} for n ε
proof −

6

have r > 0 =⇒ infinite (D ∩ ball z r) for z r
by (metis islimpt-UNIV limpt-of-closure islimpt-eq-infinite-ball cloD)

then have infinite (D ∩ BALL n ε) for n ε
by (simp add: BALL-def p0 q-gt0)

then show ?thesis
by (metis DD-def finite.emptyI infinite-remove)

qed
then have dd-in-DD: dd n ε ∈ DD n ε for n ε

by (simp add: dd-def some-in-eq)

have h-cong: h n ε = h n ε ′ if
∧

i. i<n =⇒ ε i = ε ′ i for n ε ε ′

using that by (simp add: h-def)
have dd-cong: dd n ε = dd n ε ′ if

∧
i. i<n =⇒ ε i = ε ′ i for n ε ε ′

using that by (metis dd-def DD-def BALL-def h-cong)
have [simp]: h n (cut ε less-than n) = h n ε for n ε

by (meson cut-apply h-cong less-than-iff)
have [simp]: dd n (cut ε less-than n) = dd n ε for n ε

by (meson cut-apply dd-cong less-than-iff)

define coeff where coeff ≡ wfrec less-than (λε n. (dd n ε − h n ε (w n)) /
p n (w n))

have coeff-eq: coeff n = (dd n coeff − h n coeff (w n)) / p n (w n) for n
by (simp add: def-wfrec [OF coeff-def])

have norm-coeff : norm (coeff n) < 1 / (fact n ∗ q n) for n
using dd-in-DD [of n coeff]

by (simp add: q-gt0 coeff-eq DD-def BALL-def dist-norm norm-minus-commute
norm-divide divide-simps)

have norm-p-bound: norm (p n z ′) ≤ q n ∗ (1 + norm z) ^ n
if dist z z ′ ≤ 1 for n z z ′

proof (induction n)
case 0
then show ?case

by (auto simp: p-def q-def)
next

case (Suc n)
have norm z ′ − norm z ≤ 1

by (smt (verit) dist-norm norm-triangle-ineq3 that)
then have §: norm (z ′ − w n) ≤ (1 + norm (w n)) ∗ (1 + norm z)

by (simp add: mult.commute add-mono distrib-left norm-triangle-le-diff)
have norm (p n z ′) ∗ norm (z ′ − w n) ≤ (q n ∗ (1 + norm z) ^ n) ∗ norm

(z ′ − w n)
by (metis Suc mult.commute mult-left-mono norm-ge-zero)

also have . . . ≤ (q n ∗ (1 + norm z) ^ n) ∗ (1 + norm (w n)) ∗ ((1 +
norm z))

by (smt (verit) § Suc mult.assoc mult-left-mono norm-ge-zero)
also have . . . ≤ q n ∗ (1 + norm (w n)) ∗ ((1 + norm z) ∗ (1 + norm z)

^ n)
by auto

7

finally show ?case
by (auto simp: p-def q-def norm-mult simp del: fact-Suc)

qed

show ?thesis
proof

define hh where hh ≡ λz. suminf (λi. coeff i ∗ p i z)
have hh holomorphic-on UNIV
proof (rule holomorphic-uniform-sequence)

fix n — Many thanks to Manuel Eberl for suggesting these approach
show h n coeff holomorphic-on UNIV

unfolding h-def p-def by (intro holomorphic-intros)
next

fix z
have uniform-limit (cball z 1) (λn. h n coeff) hh sequentially

unfolding hh-def h-def
proof (rule Weierstrass-m-test)

let ?M = λn. (1 + norm z) ^ n / fact n
have ∃N . ∀n≥N . B ≤ (1 + real n) / (1 + norm z) for B
proof

show ∀n≥nat dB ∗ (1 + norm z)e. B ≤ (1 + real n) / (1 + norm z)
using norm-ge-zero [of z] by (auto simp: divide-simps simp del:

norm-ge-zero)
qed
then have L: liminf (λn. ereal ((1 + real n) / (1 + norm z))) = ∞

by (simp add: Lim-PInfty flip: liminf-PInfty)
have ∀ F n in sequentially. 0 < (1 + cmod z) ^ n / fact n

using norm-ge-zero [of z] by (simp del: norm-ge-zero)
then show summable ?M

by (rule ratio-test-convergence) (auto simp: add-nonneg-eq-0-iff L)
fix n z ′

assume z ′ ∈ cball z 1
then have norm (coeff n ∗ p n z ′) ≤ norm (coeff n) ∗ q n ∗ (1 + norm

z) ^ n
by (simp add: mult.assoc mult-mono norm-mult norm-p-bound)

also have . . . ≤ (1 / fact n) ∗ (1 + norm z) ^ n
proof (rule mult-right-mono)

show norm (coeff n) ∗ q n ≤ 1 / fact n
using q-gt0 norm-coeff [of n] by (simp add: field-simps)

qed auto
also have . . . ≤ ?M n

by (simp add: divide-simps)
finally show norm (coeff n ∗ p n z ′) ≤ ?M n .

qed
then show ∃ d>0 . cball z d ⊆ UNIV ∧ uniform-limit (cball z d) (λn. h

n coeff) hh sequentially
using zero-less-one by blast

qed auto
then show hh analytic-on UNIV

8

by (simp add: analytic-on-open)
have hh-eq-dd: hh (w n) = dd n coeff for n
proof −

have hh (w n) = h (Suc n) coeff (w n)
unfolding hh-def h-def by (intro suminf-finite) auto

also have . . . = dd n coeff
by (induction n) (auto simp add: p0 h-def p-def coeff-eq [of Suc -] coeff-eq

[of 0])
finally show ?thesis .

qed
then have hh (w n) ∈ D for n

using DD-def dd-in-DD by fastforce
then show inD γ hh

unfolding inD-def by (metis η bij-betw-iff-bijections comp-apply w-def)
have hh (w n) 6= f (η n) (w n) for n

using DD-def dd-in-DD g-def hh-eq-dd by auto
then show ∀β∈elts γ. hh 6= f β

by (metis η bij-betw-imp-surj-on imageE)
qed

qed
with f show ?thesis

using inj by (rule-tac x=h in exI) (auto simp: Φ-def inj-on-def)
qed
define G where G ≡ λf γ. @h. Φ γ ((restrict f (elts γ))(γ:=h))
define f where f ≡ transrec G
have Φf : Φ β f if β ∈ elts ω1 for β

using that
proof (induction β rule: eps-induct)

case (step γ)
then have IH : ∀β∈elts γ. Φ β f

using Ord-ω1 Ord-trans by blast
have f γ = G f γ

by (metis G-def f-def restrict-apply ′ restrict-ext transrec)
moreover have Φ γ ((restrict f (elts γ))(γ := G f γ))

by (metis ind-step[OF step.prems] G-def IH someI)
ultimately show ?case

by (metis IH Φ-def elts-succ fun-upd-same fun-upd-triv inj-on-restrict-eq
restrict-upd)

qed
then have anf :

∧
β. β ∈ elts ω1 =⇒ f β analytic-on UNIV

and inD:
∧
α β. [[β ∈ elts ω1 ; α ∈ elts β]] =⇒ f β (ζ α) ∈ D

using Φ-def inD-def by blast+
have injf : inj-on f (elts ω1)
using Φf unfolding inj-on-def Φ-def by (metis Ord-ω1 Ord-in-Ord Ord-linear-le

in-succ-iff)
show ?thesis
proof

let ?F = f ‘ elts ω1
have countable ((λf . f z) ‘ f ‘ elts ω1) for z

9

proof −
obtain α where α: ζ α = z α ∈ elts ω1 Ord α

by (meson Ord-ω1 Ord-in-Ord UNIV-I ζ bij-betw-iff-bijections)
let ?B = elts ω1 − elts (succ α)
have eq: elts ω1 = elts (succ α) ∪ ?B
using α by (metis Diff-partition Ord-ω1 OrdmemD less-eq-V-def succ-le-iff)

have (λf . f z) ‘ f ‘ ?B ⊆ D
using α inD by clarsimp (meson Ord-ω1 Ord-in-Ord Ord-linear)

then have countable ((λf . f z) ‘ f ‘ ?B)
by (meson ‹countable D› countable-subset)

moreover have countable ((λf . f z) ‘ f ‘ elts (succ α))
by (simp add: α less-ω1-imp-countable)

ultimately show ?thesis
using eq by (metis countable-Un-iff image-Un)

qed
then show Wetzel ?F

unfolding Wetzel-def by (blast intro: anf)
show uncountable ?F

using Ord-ω1 countable-iff-less-ω1 countable-image-inj-eq injf by blast
qed

qed

theorem Erdos-Wetzel: C-continuum = ℵ1 ←→ (∃F . Wetzel F ∧ uncountable F)
by (metis C-continuum-ge Erdos-Wetzel-CH Erdos-Wetzel-nonCH less-V-def)

The originally submitted version of this theory included the develop-
ment of cardinals for general Isabelle/HOL sets (as opposed to ZF sets,
elements of type V), as well as other generally useful library material. From
March 2022, that material has been moved to the analysis libraries or to
ZFC-in-HOL.General-Cardinals, as appropriate.
end

References
[1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer, 6th

edition, 2018.

10

	Wetzel's Problem, Solved by Erdös
	When the continuum hypothesis is false
	When the continuum hypothesis is true

