
Lifting Definition Option∗

René Thiemann

March 17, 2025

Abstract

We implemented a command, lift-definition-option, which can
be used to easily generate elements of a restricted type {x :: ′a. P x},
provided the definition is of the form λ y1 . . . yn. if check y1 . . . yn

then Some (generate y1 . . . yn :: ′a) else None and check y1 . . . yn =⇒
P (generate y1 . . . yn) can be proven.

In principle, such a definition is also directly possible using one
invocation of lift-definition. However, then this definition will not
be suitable for code-generation. To this end, we automated a more
complex construction of Joachim Breitner which is amenable for code-
generation, and where the test check y1 . . . yn will only be performed
once. In the automation, one auxiliary type is created, and Isabelle’s
lifting- and transfer-package is invoked several times.

This entry is outdated as in the meantime the lifting- and
transfer-package has the desired functionality in an even more
general way. Therefore, only the examples are kept.

Contents
1 Examples 2

1.1 A simple restricted type without type-parameters 2
1.2 Examples with type-parameters in the restricted type. 2
1.3 Example from IsaFoR/CeTA . 3
1.4 Code generation tests and derived theorems 3

theory Lifting-Definition-Option-Examples
imports

Main
begin

∗This research is supported by FWF (Austrian Science Fund) project Y 757.

1

1 Examples
1.1 A simple restricted type without type-parameters
typedef restricted = { i :: int. i mod 2 = 0} morphisms base restricted

by (intro exI [of - 4]) auto
setup-lifting type-definition-restricted

Let us start with just using a sufficient criterion for testing for even
numbers, without actually generating them, i.e., where the generator is just
the identity function.
lift-definition(code-dt) restricted-of-simple :: int ⇒ restricted option is
λ x :: int. if x ∈ {0 , 2 , 4 , 6} then Some x else None by auto

We can also take several input arguments for the test, and generate a
more complex value.
lift-definition(code-dt) restricted-of-many-args :: nat ⇒ int ⇒ bool ⇒ restricted
option is
λ x y (b :: bool). if int x + y = 5 then Some ((int x + 1) ∗ (y + 1)) else None

by clarsimp presburger

No problem to use type parameters.
lift-definition(code-dt) restricted-of-poly :: ′b list ⇒ restricted option is
λ xs :: ′b list. if length xs = 2 then Some (int (length (xs))) else None by auto

1.2 Examples with type-parameters in the restricted type.
typedef ′f restrictedf = { xs :: ′f list. length xs < 3} morphisms basef restrictedf

by (intro exI [of - Nil]) auto
setup-lifting type-definition-restrictedf

It does not matter, if we take the same or different type-parameters in
the lift-definition.
lift-definition(code-dt) test1 :: ′g ⇒ nat ⇒ ′g restrictedf option is
λ (e :: ′g) x. if x < 2 then Some (replicate x e) else None by auto

lift-definition(code-dt) test2 :: ′f ⇒ nat ⇒ ′f restrictedf option is
λ (e :: ′f) x. if x < 2 then Some (replicate x e) else None by auto

Tests with multiple type-parameters.
typedef (′a, ′f) restr = { (xs :: ′a list,ys :: ′f list) . length xs = length ys}

morphisms base ′ restr
by (rule exI [of - ([], [])], auto)

setup-lifting type-definition-restr

lift-definition(code-dt) restr-of-pair :: ′g ⇒ ′e list ⇒ nat ⇒ nat ⇒ (′e,nat) restr
option is
λ (z :: ′g) (xs :: ′e list) (y :: nat) n. if length xs = n then Some (xs,replicate n y)

else None

2

by auto

1.3 Example from IsaFoR/CeTA
An argument filter is a mapping π from n-ary function symbols into lists of
positions, i.e., where each position is between 0 and n-1. In IsaFoR, (Isabelle’s
Formalization of Rewriting) and CeTA [1], the corresponding certifier for term
rewriting related properties, this is modelled as follows, where a partial
argument filter in a map is extended to a full one by means of an default
filter.
typedef ′f af = { (π :: ′f × nat ⇒ nat list). (∀ f n. set (π (f ,n)) ⊆ {0 ..< n})}

morphisms af Abs-af by (rule exI [of - λ -. []], auto)

setup-lifting type-definition-af

type-synonym ′f af-impl = ((′f × nat) × nat list)list

fun fun-of-map-fun :: (′a ⇒ ′b option) ⇒ (′a ⇒ ′b) ⇒ (′a ⇒ ′b) where
fun-of-map-fun m f a = (case m a of Some b ⇒ b | None ⇒ f a)

lift-definition(code-dt) af-of :: ′f af-impl ⇒ ′f af option is
λ s :: ′f af-impl. if (∀ fidx ∈ set s. (∀ i ∈ set (snd fidx). i < snd (fst fidx)))

then Some (fun-of-map-fun (map-of s) (λ (f ,n). [0 ..< n])) else None
using map-of-SomeD by (fastforce split: option.splits)

1.4 Code generation tests and derived theorems
export-code

restricted-of-many-args
restricted-of-simple
restricted-of-poly
test1
test2
restr-of-pair
af-of

in Haskell

lemma restricted-of-simple-Some:
restricted-of-simple x = Some r =⇒ base r = x

using restricted-of-simple.rep-eq[of x]
apply (split if-splits)
apply (simp-all only: option.map option.inject option.simps(3))
done

end

3

Acknowledgements

We thank Andreas Lochbihler for pointing us to Joachim’s solution, and we
thank Makarius Wenzel for explaining us, how we can go back from states
to local theories within Isabelle/ML.

References
[1] R. Thiemann and C. Sternagel. Certification of termination proofs using

CeTA. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors,
Theorem Proving in Higher Order Logics, 22nd International Confer-
ence, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceed-
ings, volume 5674 of Lecture Notes in Computer Science, pages 452–468.
Springer, 2009.

4

	Examples
	A simple restricted type without type-parameters
	Examples with type-parameters in the restricted type.
	Example from IsaFoR/CeTA
	Code generation tests and derived theorems

