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Abstract

We implemented a command, lift-definition-option, which can
be used to easily generate elements of a restricted type {x :: ′a. P x},
provided the definition is of the form λ y1 . . . yn. if check y1 . . . yn

then Some (generate y1 . . . yn :: ′a) else None and check y1 . . . yn =⇒
P (generate y1 . . . yn) can be proven.

In principle, such a definition is also directly possible using one
invocation of lift-definition. However, then this definition will not
be suitable for code-generation. To this end, we automated a more
complex construction of Joachim Breitner which is amenable for code-
generation, and where the test check y1 . . . yn will only be performed
once. In the automation, one auxiliary type is created, and Isabelle’s
lifting- and transfer-package is invoked several times.

This entry is outdated as in the meantime the lifting- and
transfer-package has the desired functionality in an even more
general way. Therefore, only the examples are kept.
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1 Examples
1.1 A simple restricted type without type-parameters
typedef restricted = { i :: int. i mod 2 = 0} morphisms base restricted

by (intro exI [of - 4 ]) auto
setup-lifting type-definition-restricted

Let us start with just using a sufficient criterion for testing for even
numbers, without actually generating them, i.e., where the generator is just
the identity function.
lift-definition(code-dt) restricted-of-simple :: int ⇒ restricted option is
λ x :: int. if x ∈ {0 , 2 , 4 , 6} then Some x else None by auto

We can also take several input arguments for the test, and generate a
more complex value.
lift-definition(code-dt) restricted-of-many-args :: nat ⇒ int ⇒ bool ⇒ restricted
option is
λ x y (b :: bool). if int x + y = 5 then Some ((int x + 1 ) ∗ (y + 1 )) else None

by clarsimp presburger

No problem to use type parameters.
lift-definition(code-dt) restricted-of-poly :: ′b list ⇒ restricted option is
λ xs :: ′b list. if length xs = 2 then Some (int (length (xs))) else None by auto

1.2 Examples with type-parameters in the restricted type.
typedef ′f restrictedf = { xs :: ′f list. length xs < 3} morphisms basef restrictedf

by (intro exI [of - Nil]) auto
setup-lifting type-definition-restrictedf

It does not matter, if we take the same or different type-parameters in
the lift-definition.
lift-definition(code-dt) test1 :: ′g ⇒ nat ⇒ ′g restrictedf option is
λ (e :: ′g) x. if x < 2 then Some (replicate x e) else None by auto

lift-definition(code-dt) test2 :: ′f ⇒ nat ⇒ ′f restrictedf option is
λ (e :: ′f ) x. if x < 2 then Some (replicate x e) else None by auto

Tests with multiple type-parameters.
typedef ( ′a, ′f ) restr = { (xs :: ′a list,ys :: ′f list) . length xs = length ys}

morphisms base ′ restr
by (rule exI [of - ([], [])], auto)

setup-lifting type-definition-restr

lift-definition(code-dt) restr-of-pair :: ′g ⇒ ′e list ⇒ nat ⇒ nat ⇒ ( ′e,nat) restr
option is
λ (z :: ′g) (xs :: ′e list) (y :: nat) n. if length xs = n then Some (xs,replicate n y)

else None
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by auto

1.3 Example from IsaFoR/CeTA
An argument filter is a mapping π from n-ary function symbols into lists of
positions, i.e., where each position is between 0 and n-1. In IsaFoR, (Isabelle’s
Formalization of Rewriting) and CeTA [1], the corresponding certifier for term
rewriting related properties, this is modelled as follows, where a partial
argument filter in a map is extended to a full one by means of an default
filter.
typedef ′f af = { (π :: ′f × nat ⇒ nat list). (∀ f n. set (π (f ,n)) ⊆ {0 ..< n})}

morphisms af Abs-af by (rule exI [of - λ -. []], auto)

setup-lifting type-definition-af

type-synonym ′f af-impl = (( ′f × nat) × nat list)list

fun fun-of-map-fun :: ( ′a ⇒ ′b option) ⇒ ( ′a ⇒ ′b) ⇒ ( ′a ⇒ ′b) where
fun-of-map-fun m f a = (case m a of Some b ⇒ b | None ⇒ f a)

lift-definition(code-dt) af-of :: ′f af-impl ⇒ ′f af option is
λ s :: ′f af-impl. if (∀ fidx ∈ set s. (∀ i ∈ set (snd fidx). i < snd (fst fidx)))

then Some (fun-of-map-fun (map-of s) (λ (f ,n). [0 ..< n])) else None
using map-of-SomeD by (fastforce split: option.splits)

1.4 Code generation tests and derived theorems
export-code

restricted-of-many-args
restricted-of-simple
restricted-of-poly
test1
test2
restr-of-pair
af-of

in Haskell

lemma restricted-of-simple-Some:
restricted-of-simple x = Some r =⇒ base r = x

using restricted-of-simple.rep-eq[of x]
apply (split if-splits)
apply (simp-all only: option.map option.inject option.simps(3 ))
done

end
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