
Laplace Transform

Fabian Immler

March 17, 2025

Abstract

This entry formalizes the Laplace transform and concrete Laplace
transforms for arithmetic functions, frequency shift, integration and
(higher) differentiation in the time domain. It proves Lerch’s lemma
and uniqueness of the Laplace transform for continuous functions. In
order to formalize the foundational assumptions, this entry contains a
formalization of piecewise continuous functions and functions of expo-
nential order.

Contents
1 References 2

2 Library Additions 2
2.1 Derivatives . 2
2.2 Integrals . 2
2.3 Miscellaneous . 7

3 Piecewise Continous Functions 7
3.1 at within filters . 7
3.2 intervals . 8

4 Existence 20
4.1 Definition . 20
4.2 Condition for Existence: Exponential Order 21
4.3 Concrete Laplace Transforms 26
4.4 higher derivatives . 42

5 Lerch Lemma 43

6 Uniqueness of Laplace Transform 45
theory Laplace-Transform-Library

imports
HOL−Analysis.Analysis

begin

1

1 References

Much of this formalization is based on Schiff’s textbook [3]. Parts of this
formalization are inspired by the HOL-Light formalization ([4], [1], [2]), but
stated more generally for piecewise continuous (instead of piecewise contin-
uously differentiable) functions.

2 Library Additions
2.1 Derivatives
lemma DERIV-compose-FDERIV :— TODO: generalize and move from HOL-
ODE

assumes DERIV f (g x) :> f ′

assumes (g has-derivative g ′) (at x within s)
shows ((λx. f (g x)) has-derivative (λx. g ′ x ∗ f ′)) (at x within s)
using assms has-derivative-compose[of g g ′ x s f (∗) f ′]
by (auto simp: has-field-derivative-def ac-simps)

lemmas has-derivative-sin[derivative-intros] = DERIV-sin[THEN DERIV-compose-FDERIV]
and has-derivative-cos[derivative-intros] = DERIV-cos[THEN DERIV-compose-FDERIV]
and has-derivative-exp[derivative-intros] = DERIV-exp[THEN DERIV-compose-FDERIV]

2.2 Integrals
lemma negligible-real-ivlI :

fixes a b::real
assumes a ≥ b
shows negligible {a .. b}

proof −
from assms have {a .. b} = {a} ∨ {a .. b} = {}

by auto
then show ?thesis

by auto
qed

lemma absolutely-integrable-on-combine:
fixes f :: real ⇒ ′a::euclidean-space
assumes f absolutely-integrable-on {a..c}

and f absolutely-integrable-on {c..b}
and a ≤ c
and c ≤ b

shows f absolutely-integrable-on {a..b}
using assms
unfolding absolutely-integrable-on-def integrable-on-def
by (auto intro!: has-integral-combine)

lemma dominated-convergence-at-top:

2

fixes f :: real ⇒ ′n::euclidean-space ⇒ ′m::euclidean-space
assumes f :

∧
k. (f k) integrable-on s and h: h integrable-on s

and le:
∧

k x. x ∈ s =⇒ norm (f k x) ≤ h x
and conv: ∀ x ∈ s. ((λk. f k x) −−−→ g x) at-top

shows g integrable-on s ((λk. integral s (f k)) −−−→ integral s g) at-top
proof −

have 3 : set-integrable lebesgue s h
unfolding absolutely-integrable-on-def

proof
show (λx. norm (h x)) integrable-on s
proof (intro integrable-spike-finite[OF - - h, where S={}] ballI)

fix x assume x ∈ s − {} then show norm (h x) = h x
using order-trans[OF norm-ge-zero le[of x]] by auto

qed auto
qed fact
have 2 : set-borel-measurable lebesgue s (f k) for k

using f [of k]
using has-integral-implies-lebesgue-measurable[of f k]
by (auto intro: simp: integrable-on-def set-borel-measurable-def)

have conv ′: ∀ x ∈ s. ((λk. f k x) −−−→ g x) sequentially
using conv filterlim-filtermap filterlim-compose filterlim-real-sequentially by

blast
from 2 have 1 : set-borel-measurable lebesgue s g

unfolding set-borel-measurable-def
by (rule borel-measurable-LIMSEQ-metric) (use conv ′ in ‹auto split: split-indicator›)
have 4 : AE x in lebesgue. ((λi. indicator s x ∗R f i x) −−−→ indicator s x ∗R g

x) at-top
∀ F i in at-top. AE x in lebesgue. norm (indicator s x ∗R f i x) ≤ indicator s x

∗R h x
using conv le by (auto intro!: always-eventually split: split-indicator)

note 1 2 3 4
note ∗ = this[unfolded set-borel-measurable-def set-integrable-def]
have g: g absolutely-integrable-on s

unfolding set-integrable-def
by (rule integrable-dominated-convergence-at-top[OF ∗])

then show g integrable-on s
by (auto simp: absolutely-integrable-on-def)

have ((λk. (LINT x:s|lebesgue. f k x)) −−−→ (LINT x:s|lebesgue. g x)) at-top
unfolding set-lebesgue-integral-def
using ∗
by (rule integral-dominated-convergence-at-top)

then show ((λk. integral s (f k)) −−−→ integral s g) at-top
using g absolutely-integrable-integrable-bound[OF le f h]
by (subst (asm) (1 2) set-lebesgue-integral-eq-integral) auto

qed

lemma has-integral-dominated-convergence-at-top:
fixes f :: real ⇒ ′n::euclidean-space ⇒ ′m::euclidean-space

3

assumes
∧

k. (f k has-integral y k) s h integrable-on s∧
k x. x∈s =⇒ norm (f k x) ≤ h x ∀ x∈s. ((λk. f k x) −−−→ g x) at-top

and x: (y −−−→ x) at-top
shows (g has-integral x) s

proof −
have int-f :

∧
k. (f k) integrable-on s

using assms by (auto simp: integrable-on-def)
have (g has-integral (integral s g)) s

by (intro integrable-integral dominated-convergence-at-top[OF int-f assms(2)])
fact+

moreover have integral s g = x
proof (rule tendsto-unique)

show ((λi. integral s (f i)) −−−→ x) at-top
using integral-unique[OF assms(1)] x by simp

show ((λi. integral s (f i)) −−−→ integral s g) at-top
by (intro dominated-convergence-at-top[OF int-f assms(2)]) fact+

qed simp
ultimately show ?thesis

by simp
qed

lemma integral-indicator-eq-restriction:
fixes f :: ′a::euclidean-space ⇒ ′b::banach
assumes f : f integrable-on R

and R ⊆ S
shows integral S (λx. indicator R x ∗R f x) = integral R f

proof −
let ?f = λx. indicator R x ∗R f x
have ?f integrable-on R

using f negligible-empty
by (rule integrable-spike) auto

from integrable-integral[OF this]
have (?f has-integral integral R ?f) S

by (rule has-integral-on-superset) (use ‹R ⊆ S› in ‹auto simp: indicator-def ›)
also have integral R ?f = integral R f

using negligible-empty
by (rule integral-spike) auto

finally show ?thesis
by blast

qed

lemma
improper-integral-at-top:
fixes f ::real ⇒ ′a::euclidean-space
assumes f absolutely-integrable-on {a..}
shows ((λx. integral {a..x} f) −−−→ integral {a..} f) at-top

proof −
let ?f = λ(k::real) (t::real). indicator {a..k} t ∗R f t
have f : f integrable-on {a..k} for k

4

using set-lebesgue-integral-eq-integral(1)[OF assms]
by (rule integrable-on-subinterval) simp

from this negligible-empty have ?f k integrable-on {a..k} for k
by (rule integrable-spike) auto

from this have ?f k integrable-on {a..} for k
by (rule integrable-on-superset) auto

moreover
have (λx. norm (f x)) integrable-on {a..}

using assms by (simp add: absolutely-integrable-on-def)
moreover
note -
moreover
have ∀ F k in at-top. k ≥ x for x::real

by (simp add: eventually-ge-at-top)
then have ∀ x∈{a..}. ((λk. ?f k x) −−−→ f x) at-top
by (auto intro!: Lim-transform-eventually[OF tendsto-const] simp: indicator-def

eventually-at-top-linorder)
ultimately
have ((λk. integral {a..} (?f k)) −−−→ integral {a ..} f) at-top

by (rule dominated-convergence-at-top) (auto simp: indicator-def)
also have (λk. integral {a..} (?f k)) = (λk. integral {a..k} f)

by (auto intro!: ext integral-indicator-eq-restriction f)
finally show ?thesis .

qed

lemma norm-integrable-onI : (λx. norm (f x)) integrable-on S
if f absolutely-integrable-on S
for f :: ′a::euclidean-space⇒ ′b::euclidean-space
using that by (auto simp: absolutely-integrable-on-def)

lemma
has-integral-improper-at-topI :
fixes f ::real ⇒ ′a::banach
assumes I : ∀ F k in at-top. (f has-integral I k) {a..k}
assumes J : (I −−−→ J) at-top
shows (f has-integral J) {a..}
apply (subst has-integral ′)

proof (auto, goal-cases)
case (1 e)
from tendstoD[OF J ‹0 < e›]
have ∀ F x in at-top. dist (I x) J < e .
moreover have ∀ F x in at-top. (x::real) > 0 by simp
moreover have ∀ F x in at-top. (x::real) > − a— TODO: this seems to be

strange?
by simp

moreover note I
ultimately have ∀ F x in at-top. x > 0 ∧ x > − a ∧ dist (I x) J < e ∧
(f has-integral I x) {a..x} by eventually-elim auto

then obtain k where k: ∀ b≥k. norm (I b − J) < e k > 0 k > − a

5

and I :
∧

c. c ≥ k =⇒ (f has-integral I c) {a..c}
by (auto simp: eventually-at-top-linorder dist-norm)

show ?case
apply (rule exI [where x=k])
apply (auto simp: ‹0 < k›)
subgoal premises prems for b c
proof −
have ball-eq: ball 0 k = {−k <..< k} by (auto simp: abs-real-def split: if-splits)
from prems ‹0 < k› have c ≥ 0 b ≤ 0

by (auto simp: subset-iff)
with prems ‹0 < k› have c ≥ k

apply (auto simp: ball-eq)
apply (auto simp: subset-iff)
apply (drule spec[where x=(c + k)/2])
apply (auto simp: algebra-split-simps not-less)
using ‹0 ≤ c› by linarith

then have norm (I c − J) < e using k by auto
moreover
from prems ‹0 < k› ‹c ≥ 0 › ‹b ≤ 0 › ‹c ≥ k› ‹k > − a› have a ≥ b

apply (auto simp: ball-eq)
apply (auto simp: subset-iff)
by (meson ‹b ≤ 0 › less-eq-real-def minus-less-iff not-le order-trans)

have ((λx. if x ∈ cbox a c then f x else 0) has-integral I c) (cbox b c)
apply (subst has-integral-restrict-closed-subintervals-eq)
using I [of c] prems ‹a ≥ b› ‹k ≤ c›
by (auto)

from negligible-empty - this have ((λx. if a ≤ x then f x else 0) has-integral
I c) (cbox b c)

by (rule has-integral-spike) auto
ultimately
show ?thesis

by (intro exI [where x=I c]) auto
qed
done

qed

lemma has-integral-improperE :
fixes f ::real ⇒ ′a::euclidean-space
assumes I : (f has-integral I) {a..}
assumes ai: f absolutely-integrable-on {a..}
obtains J where∧

k. (f has-integral J k) {a..k}
(J −−−→ I) at-top

proof −
define J where J k = integral {a .. k} f for k
have (f has-integral J k) {a..k} for k

unfolding J-def
by (force intro: integrable-on-subinterval has-integral-integrable[OF I])

moreover

6

have I-def [symmetric]: integral {a..} f = I
using I by auto

from improper-integral-at-top[OF ai]
have (J −−−→ I) at-top

unfolding J-def I-def .
ultimately show ?thesis ..

qed

2.3 Miscellaneous
lemma AE-BallI : AE x∈X in F . P x if ∀ x ∈ X . P x

using that by (intro always-eventually) auto

lemma bounded-le-Sup:
assumes bounded (f ‘ S)
shows ∀ x∈S . norm (f x) ≤ Sup (norm ‘ f ‘ S)
by (auto intro!: cSup-upper bounded-imp-bdd-above simp: bounded-norm-comp

assms)

end

3 Piecewise Continous Functions
theory Piecewise-Continuous

imports
Laplace-Transform-Library

begin

3.1 at within filters
lemma at-within-self-singleton[simp]: at i within {i} = bot

by (auto intro!: antisym filter-leI simp: eventually-at-filter)

lemma at-within-t1-space-avoid:
(at x within X − {i}) = (at x within X) if x 6= i for x i:: ′a::t1-space

proof (safe intro!: antisym filter-leI)
fix P
assume eventually P (at x within X − {i})
moreover have eventually (λx. x 6= i) (nhds x)

by (rule t1-space-nhds) fact
ultimately
show eventually P (at x within X)

unfolding eventually-at-filter
by eventually-elim auto

qed (simp add: eventually-mono order .order-iff-strict eventually-at-filter)

lemma at-within-t1-space-avoid-finite:
(at x within X − I) = (at x within X) if finite I x /∈ I for x:: ′a::t1-space
using that

7

proof (induction I)
case (insert i I)
then show ?case

by auto (metis Diff-insert at-within-t1-space-avoid)
qed simp

lemma at-within-interior :
NO-MATCH (UNIV :: ′a set) (S :: ′a::topological-space set) =⇒ x ∈ interior S =⇒

at x within S = at x
by (rule at-within-interior)

3.2 intervals
lemma Compl-Icc: − {a .. b} = {..<a} ∪ {b<..} for a b:: ′a::linorder

by auto

lemma interior-Icc[simp]: interior {a..b} = {a<..<b}
for a b:: ′a::{linorder-topology, dense-order , no-bot, no-top}

— TODO: is no-bot and no-top really required?
by (auto simp add: Compl-Icc interior-closure)

lemma closure-finite[simp]: closure X = X if finite X for X :: ′a::t1-space set
using that
by (induction X) (simp-all add: closure-insert)

definition piecewise-continuous-on :: ′a::linorder-topology ⇒ ′a ⇒ ′a set ⇒ (′a ⇒
′b::topological-space) ⇒ bool
where piecewise-continuous-on a b I f ←→
(continuous-on ({a .. b} − I) f ∧ finite I ∧
(∀ i∈I . (i ∈ {a<..b} −→ (∃ l. (f −−−→ l) (at-left i))) ∧
(i ∈ {a..<b} −→ (∃ u. (f −−−→ u) (at-right i)))))

lemma piecewise-continuous-on-subset:
piecewise-continuous-on a b I f =⇒ {c .. d} ⊆ {a .. b} =⇒ piecewise-continuous-on

c d I f
by (force simp add: piecewise-continuous-on-def intro: continuous-on-subset)

lemma piecewise-continuous-onE :
assumes piecewise-continuous-on a b I f
obtains l u
where finite I

and continuous-on ({a..b} − I) f
and (

∧
i. i ∈ I =⇒ a < i =⇒ i ≤ b =⇒ (f −−−→ l i) (at-left i))

and (
∧

i. i ∈ I =⇒ a ≤ i =⇒ i < b =⇒ (f −−−→ u i) (at-right i))
using assms
by (auto simp: piecewise-continuous-on-def Ball-def) metis

lemma piecewise-continuous-onI :
assumes finite I continuous-on ({a..b} − I) f

8

and (
∧

i. i ∈ I =⇒ a < i =⇒ i ≤ b =⇒ (f −−−→ l i) (at-left i))
and (

∧
i. i ∈ I =⇒ a ≤ i =⇒ i < b =⇒ (f −−−→ u i) (at-right i))

shows piecewise-continuous-on a b I f
using assms
by (force simp: piecewise-continuous-on-def)

lemma piecewise-continuous-onI ′:
fixes a b:: ′a::{linorder-topology, dense-order , no-bot, no-top}
assumes finite I

∧
x. a < x =⇒ x < b =⇒ isCont f x

and a /∈ I =⇒ continuous (at-right a) f
and b /∈ I =⇒ continuous (at-left b) f
and (

∧
i. i ∈ I =⇒ a < i =⇒ i ≤ b =⇒ (f −−−→ l i) (at-left i))

and (
∧

i. i ∈ I =⇒ a ≤ i =⇒ i < b =⇒ (f −−−→ u i) (at-right i))
shows piecewise-continuous-on a b I f

proof (rule piecewise-continuous-onI)
have x /∈ I =⇒ a ≤ x =⇒ x ≤ b =⇒ (f −−−→ f x) (at x within {a..b}) for x

using assms(2)[of x] assms(3 ,4)
by (cases a = x; cases b = x; cases x ∈ {a<..<b})
(auto simp: at-within-Icc-at-left at-within-Icc-at-right isCont-def

continuous-within filterlim-at-split at-within-interior)
then show continuous-on ({a .. b} − I) f

by (auto simp: continuous-on-def ‹finite I › at-within-t1-space-avoid-finite)
qed fact+

lemma piecewise-continuous-onE ′:
fixes a b:: ′a::{linorder-topology, dense-order , no-bot, no-top}
assumes piecewise-continuous-on a b I f
obtains l u
where finite I

and
∧

x. a < x =⇒ x < b =⇒ x /∈ I =⇒ isCont f x
and (

∧
x. a < x =⇒ x ≤ b =⇒ (f −−−→ l x) (at-left x))

and (
∧

x. a ≤ x =⇒ x < b =⇒ (f −−−→ u x) (at-right x))
and

∧
x. a ≤ x =⇒ x ≤ b =⇒ x /∈ I =⇒ f x = l x

and
∧

x. a ≤ x =⇒ x ≤ b =⇒ x /∈ I =⇒ f x = u x
proof −

from piecewise-continuous-onE [OF assms] obtain l u
where finite I

and continuous: continuous-on ({a..b} − I) f
and left: (

∧
i. i ∈ I =⇒ a < i =⇒ i ≤ b =⇒ (f −−−→ l i) (at-left i))

and right: (
∧

i. i ∈ I =⇒ a ≤ i =⇒ i < b =⇒ (f −−−→ u i) (at-right i))
by metis

define l ′ where l ′ x = (if x ∈ I then l x else f x) for x
define u ′ where u ′ x = (if x ∈ I then u x else f x) for x
note ‹finite I ›
moreover from continuous
have a < x =⇒ x < b =⇒ x /∈ I =⇒ isCont f x for x

by (rule continuous-on-interior) (auto simp: interior-diff ‹finite I ›)
moreover
from continuous have a < x =⇒ x ≤ b =⇒ x /∈ I =⇒ (f −−−→ f x) (at-left x)

9

for x
by (cases x = b)
(auto simp: continuous-on-def at-within-t1-space-avoid-finite ‹finite I ›

at-within-Icc-at-left at-within-interior filterlim-at-split
dest!: bspec[where x=x])

then have a < x =⇒ x ≤ b =⇒ (f −−−→ l ′ x) (at-left x) for x
by (auto simp: l ′-def left)

moreover
from continuous have a ≤ x =⇒ x < b =⇒ x /∈ I =⇒ (f −−−→ f x) (at-right

x) for x
by (cases x = a)
(auto simp: continuous-on-def at-within-t1-space-avoid-finite ‹finite I ›

at-within-Icc-at-right at-within-interior filterlim-at-split
dest!: bspec[where x=x])

then have a ≤ x =⇒ x < b =⇒ (f −−−→ u ′ x) (at-right x) for x
by (auto simp: u ′-def right)

moreover have a ≤ x =⇒ x ≤ b =⇒ x /∈ I =⇒ f x = l ′ x for x by (auto simp:
l ′-def)

moreover have a ≤ x =⇒ x ≤ b =⇒ x /∈ I =⇒ f x = u ′ x for x by (auto simp:
u ′-def)

ultimately show ?thesis ..
qed

lemma tendsto-avoid-at-within:
(f −−−→ l) (at x within X)
if (f −−−→ l) (at x within X − {x})
using that
by (auto simp: eventually-at-filter dest!: topological-tendstoD intro!: topologi-

cal-tendstoI)

lemma tendsto-within-subset-eventuallyI :
(f −−−→ fx) (at x within X)
if g: (g −−−→ gy) (at y within Y)

and ev: ∀ F x in (at y within Y). f x = g x
and xy: x = y
and fxgy: fx = gy
and XY : X − {x} ⊆ Y

apply (rule tendsto-avoid-at-within)
apply (rule tendsto-within-subset[where S = Y])
unfolding xy
apply (subst tendsto-cong[OF ev])
apply (rule g[folded fxgy])

apply (rule XY [unfolded xy])
done

lemma piecewise-continuous-on-insertE :
assumes piecewise-continuous-on a b (insert i I) f
assumes i ∈ {a .. b}
obtains g h where

10

piecewise-continuous-on a i I g
piecewise-continuous-on i b I h∧

x. a ≤ x =⇒ x < i =⇒ g x = f x∧
x. i < x =⇒ x ≤ b =⇒ h x = f x

proof −
from piecewise-continuous-onE [OF assms(1)] ‹i ∈ {a .. b}› obtain l u where

finite: finite I
and cf : continuous-on ({a..b} − insert i I) f
and l: (

∧
i. i ∈ I =⇒ a < i =⇒ i ≤ b =⇒ (f −−−→ l i) (at-left i)) i > a =⇒

(f −−−→ l i) (at-left i)
and u: (

∧
i. i ∈ I =⇒ a ≤ i =⇒ i < b =⇒ (f −−−→ u i) (at-right i)) i < b

=⇒ (f −−−→ u i) (at-right i)
by auto (metis (mono-tags))

have fl: (f (i := x) −−−→ l j) (at-left j) if j ∈ I a < j j ≤ b for j x
using l(1)
by (rule tendsto-within-subset-eventuallyI)

(auto simp: eventually-at-filter frequently-def t1-space-nhds that)
have fr : (f (i := x) −−−→ u j) (at-right j) if j ∈ I a ≤ j j < b for j x

using u(1)
by (rule tendsto-within-subset-eventuallyI)

(auto simp: eventually-at-filter frequently-def t1-space-nhds that)
from cf have tendsto: (f −−−→ f x) (at x within {a..b} − insert i I)

if x ∈ {a .. b} − insert i I for x using that
by (auto simp: continuous-on-def)

have continuous-on ({a..i} − I) (f (i:=l i))
apply (cases a = i)
subgoal by (auto simp: continuous-on-def Diff-triv)
unfolding continuous-on-def
apply safe
subgoal for x

apply (cases x = i)
subgoal

apply (rule tendsto-within-subset-eventuallyI)
apply (rule l(2))

by (auto simp: eventually-at-filter)
subgoal

apply (subst at-within-t1-space-avoid[symmetric], assumption)
apply (rule tendsto-within-subset-eventuallyI [where y=x])

apply (rule tendsto)
using ‹i ∈ {a .. b}› by (auto simp: eventually-at-filter)

done
done

then have piecewise-continuous-on a i I (f (i:=l i))
using ‹i ∈ {a .. b}›
by (auto intro!: piecewise-continuous-onI finite fl fr)

moreover
have continuous-on ({i..b} − I) (f (i:=u i))

11

apply (cases b = i)
subgoal by (auto simp: continuous-on-def Diff-triv)
unfolding continuous-on-def
apply safe
subgoal for x

apply (cases x = i)
subgoal

apply (rule tendsto-within-subset-eventuallyI)
apply (rule u(2))

by (auto simp: eventually-at-filter)
subgoal

apply (subst at-within-t1-space-avoid[symmetric], assumption)
apply (rule tendsto-within-subset-eventuallyI [where y=x])

apply (rule tendsto)
using ‹i ∈ {a .. b}› by (auto simp: eventually-at-filter)

done
done

then have piecewise-continuous-on i b I (f (i:=u i))
using ‹i ∈ {a .. b}›
by (auto intro!: piecewise-continuous-onI finite fl fr)

moreover have (f (i:=l i)) x = f x if a ≤ x x < i for x
using that by auto

moreover have (f (i:=u i)) x = f x if i < x x ≤ b for x
using that by auto

ultimately show ?thesis ..
qed

lemma eventually-avoid-finite:
∀ F x in at y within Y . x /∈ I if finite I for y:: ′a::t1-space
using that

proof (induction)
case empty
then show ?case by simp

next
case (insert x F)
then show ?case

apply (auto intro!: eventually-conj)
apply (cases y = x)
subgoal by (simp add: eventually-at-filter)
subgoal by (rule tendsto-imp-eventually-ne) (rule tendsto-ident-at)
done

qed

lemma eventually-at-left-linorder :— TODO: generalize ?b < ?a =⇒ ∀ F x in at-left
?a. x ∈ {?b<..<?a}

a > (b :: ′a :: linorder-topology) =⇒ eventually (λx. x ∈ {b<..<a}) (at-left a)
unfolding eventually-at-left
by auto

12

lemma eventually-at-right-linorder :— TODO: generalize ?a < ?b =⇒ ∀ F x in
at-right ?a. x ∈ {?a<..<?b}

a > (b :: ′a :: linorder-topology) =⇒ eventually (λx. x ∈ {b<..<a}) (at-right b)
unfolding eventually-at-right
by auto

lemma piecewise-continuous-on-congI :
piecewise-continuous-on a b I g
if piecewise-continuous-on a b I f

and eq:
∧

x. x ∈ {a .. b} − I =⇒ g x = f x
proof −

from piecewise-continuous-onE [OF that(1)]
obtain l u where finite: finite I

and ∗:
continuous-on ({a..b} − I) f
(
∧

i. i ∈ I =⇒ a < i =⇒ i ≤ b =⇒ (f −−−→ l i) (at-left i))∧
i. i ∈ I =⇒ a ≤ i =⇒ i < b =⇒ (f −−−→ u i) (at-right i)

by blast
note finite
moreover
from ∗ have continuous-on ({a..b} − I) g

using that(2)
by (auto simp: eq cong: continuous-on-cong) (subst continuous-on-cong[OF refl

eq]; assumption)
moreover
have ∀ F x in at-left i. f x = g x if a < i i ≤ b for i

using eventually-avoid-finite[OF ‹finite I ›, of i {..<i}]
eventually-at-left-linorder [OF ‹a < i›]

by eventually-elim (subst eq, use that in auto)
then have i ∈ I =⇒ a < i =⇒ i ≤ b =⇒ (g −−−→ l i) (at-left i) for i

using ∗(2)
by (rule Lim-transform-eventually[rotated]) auto

moreover
have ∀ F x in at-right i. f x = g x if a ≤ i i < b for i

using eventually-avoid-finite[OF ‹finite I ›, of i {i<..}]
eventually-at-right-linorder [OF ‹i < b›]

by eventually-elim (subst eq, use that in auto)
then have i ∈ I =⇒ a ≤ i =⇒ i < b =⇒ (g −−−→ u i) (at-right i) for i

using ∗(3)
by (rule Lim-transform-eventually[rotated]) auto

ultimately
show ?thesis

by (rule piecewise-continuous-onI) auto
qed

lemma piecewise-continuous-on-cong[cong]:
piecewise-continuous-on a b I f ←→ piecewise-continuous-on c d J g
if a = c

b = d

13

I = J∧
x. c ≤ x =⇒ x ≤ d =⇒ x /∈ J =⇒ f x = g x

using that
by (auto intro: piecewise-continuous-on-congI)

lemma tendsto-at-left-continuous-on-avoidI : (f −−−→ g i) (at-left i)
if g: continuous-on ({a..i} − I) g

and gf :
∧

x. a < x =⇒ x < i =⇒ g x = f x
i /∈ I finite I a < i

for i:: ′a::linorder-topology
proof (rule Lim-transform-eventually)

from that have i ∈ {a .. i} by auto
from g have (g −−−→ g i) (at i within {a..i} − I)

using ‹i /∈ I › ‹i ∈ {a .. i}›
by (auto elim!: piecewise-continuous-onE simp: continuous-on-def)

then show (g −−−→ g i) (at-left i)
by (metis that at-within-Icc-at-left at-within-t1-space-avoid-finite

greaterThanLessThan-iff)
show ∀ F x in at-left i. g x = f x

using eventually-at-left-linorder [OF ‹a < i›]
by eventually-elim (auto simp: ‹a < i› gf)

qed

lemma tendsto-at-right-continuous-on-avoidI : (f −−−→ g i) (at-right i)
if g: continuous-on ({i..b} − I) g

and gf :
∧

x. i < x =⇒ x < b =⇒ g x = f x
i /∈ I finite I i < b

for i:: ′a::linorder-topology
proof (rule Lim-transform-eventually)

from that have i ∈ {i .. b} by auto
from g have (g −−−→ g i) (at i within {i..b} − I)

using ‹i /∈ I › ‹i ∈ {i .. b}›
by (auto elim!: piecewise-continuous-onE simp: continuous-on-def)

then show (g −−−→ g i) (at-right i)
by (metis that at-within-Icc-at-right at-within-t1-space-avoid-finite

greaterThanLessThan-iff)
show ∀ F x in at-right i. g x = f x

using eventually-at-right-linorder [OF ‹i < b›]
by eventually-elim (auto simp: ‹i < b› gf)

qed

lemma piecewise-continuous-on-insert-leftI :
piecewise-continuous-on a b (insert a I) f if piecewise-continuous-on a b I f
apply (cases a ∈ I)
subgoal using that by (auto dest: insert-absorb)
subgoal

using that
apply (rule piecewise-continuous-onE)
subgoal for l u

14

apply (rule piecewise-continuous-onI [where u=u(a:=f a)])
apply (auto intro: continuous-on-subset)

apply (rule tendsto-at-right-continuous-on-avoidI , assumption)
apply auto

done
done

done

lemma piecewise-continuous-on-insert-rightI :
piecewise-continuous-on a b (insert b I) f if piecewise-continuous-on a b I f
apply (cases b ∈ I)
subgoal using that by (auto dest: insert-absorb)
subgoal

using that
apply (rule piecewise-continuous-onE)
subgoal for l u

apply (rule piecewise-continuous-onI [where l=l(b:=f b)])
apply (auto intro: continuous-on-subset)

apply (rule tendsto-at-left-continuous-on-avoidI , assumption)
apply auto

done
done

done

theorem piecewise-continuous-on-induct[consumes 1 , case-names empty combine
weaken]:

assumes pc: piecewise-continuous-on a b I f
assumes 1 :

∧
a b f . continuous-on {a .. b} f =⇒ P a b {} f

assumes 2 :
∧

a i b I f1 f2 f . a ≤ i =⇒ i ≤ b =⇒ i /∈ I =⇒ P a i I f1 =⇒ P i
b I f2 =⇒

piecewise-continuous-on a i I f1 =⇒
piecewise-continuous-on i b I f2 =⇒
(
∧

x. a ≤ x =⇒ x < i =⇒ f1 x = f x) =⇒
(
∧

x. i < x =⇒ x ≤ b =⇒ f2 x = f x) =⇒
(i > a =⇒ (f −−−→ f1 i) (at-left i)) =⇒
(i < b =⇒ (f −−−→ f2 i) (at-right i)) =⇒
P a b (insert i I) f

assumes 3 :
∧

a b i I f . P a b I f =⇒ finite I =⇒ i /∈ I =⇒ P a b (insert i I) f
shows P a b I f

proof −
from pc have finite I

by (auto simp: piecewise-continuous-on-def)
then show ?thesis

using pc
proof (induction I arbitrary: a b f)

case empty
then show ?case

by (auto simp: piecewise-continuous-on-def 1)
next

15

case (insert i I)
show ?case
proof (cases i ∈ {a .. b})

case True
from insert.prems[THEN piecewise-continuous-on-insertE , OF ‹i ∈ {a .. b}›]
obtain g h

where g: piecewise-continuous-on a i I g
and h: piecewise-continuous-on i b I h
and gf :

∧
x. a ≤ x =⇒ x < i =⇒ g x = f x

and hf :
∧

x. i < x =⇒ x ≤ b =⇒ h x = f x
by metis

from g have pcg: piecewise-continuous-on a i I (f (i:=g i))
by (rule piecewise-continuous-on-congI) (auto simp: gf)

from h have pch: piecewise-continuous-on i b I (f (i:=h i))
by (rule piecewise-continuous-on-congI) (auto simp: hf)

have fg: (f −−−→ g i) (at-left i) if a < i
apply (rule tendsto-at-left-continuous-on-avoidI [where a=a and I=I])
using g ‹i /∈ I › ‹a < i›
by (auto elim!: piecewise-continuous-onE simp: gf)

have fh: (f −−−→ h i) (at-right i) if i < b
apply (rule tendsto-at-right-continuous-on-avoidI [where b=b and I=I])
using h ‹i /∈ I › ‹i < b›
by (auto elim!: piecewise-continuous-onE simp: hf)

show ?thesis
apply (rule 2)
using True apply force
using True apply force

apply (rule insert)
apply (rule insert.IH , rule pcg)

apply (rule insert.IH , rule pch)
apply fact

apply fact
using 3
by (auto simp: fg fh)

next
case False
with insert.prems
have piecewise-continuous-on a b I f

by (auto simp: piecewise-continuous-on-def)
from insert.IH [OF this] show ?thesis

by (rule 3) fact+
qed

qed
qed

lemma continuous-on-imp-piecewise-continuous-on:
continuous-on {a .. b} f =⇒ piecewise-continuous-on a b {} f
by (auto simp: piecewise-continuous-on-def)

16

lemma piecewise-continuous-on-imp-absolutely-integrable:
fixes a b::real and f ::real ⇒ ′a::euclidean-space
assumes piecewise-continuous-on a b I f
shows f absolutely-integrable-on {a..b}
using assms

proof (induction rule: piecewise-continuous-on-induct)
case (empty a b f)
show ?case

by (auto intro!: absolutely-integrable-onI integrable-continuous-interval
continuous-intros empty)

next
case (combine a i b I f1 f2 f)
from combine(10)
have f absolutely-integrable-on {a..i}

by (rule absolutely-integrable-spike[where S={i}]) (auto simp: combine)
moreover
from combine(11)
have f absolutely-integrable-on {i..b}

by (rule absolutely-integrable-spike[where S={i}]) (auto simp: combine)
ultimately
show ?case

by (rule absolutely-integrable-on-combine) fact+
qed

lemma piecewise-continuous-on-integrable:
fixes a b::real and f ::real ⇒ ′a::euclidean-space
assumes piecewise-continuous-on a b I f
shows f integrable-on {a..b}
using piecewise-continuous-on-imp-absolutely-integrable[OF assms]
unfolding absolutely-integrable-on-def by auto

lemma piecewise-continuous-on-comp:
assumes p: piecewise-continuous-on a b I f
assumes c:

∧
x. isCont (λ(x, y). g x y) x

shows piecewise-continuous-on a b I (λx. g x (f x))
proof −

from piecewise-continuous-onE [OF p]
obtain l u

where I : finite I
and cf : continuous-on ({a..b} − I) f
and l: (

∧
i. i ∈ I =⇒ a < i =⇒ i ≤ b =⇒ (f −−−→ l i) (at-left i))

and u: (
∧

i. i ∈ I =⇒ a ≤ i =⇒ i < b =⇒ (f −−−→ u i) (at-right i))
by metis

note ‹finite I ›
moreover
from c have cg: continuous-on UNIV (λ(x, y). g x y)
using c by (auto simp: continuous-on-def isCont-def intro: tendsto-within-subset)

then have continuous-on ({a..b} − I) (λx. g x (f x))

17

by (intro continuous-on-compose2 [OF cg, where f=λx. (x, f x), simplified])
(auto intro!: continuous-intros cf)

moreover
note tendstcomp = tendsto-compose[OF c[unfolded isCont-def], where f=λx. (x,

f x), simplified, THEN tendsto-eq-rhs]
have ((λx. g x (f x)) −−−→ g i (u i)) (at-right i) if i ∈ I a ≤ i i < b for i

by (rule tendstcomp) (auto intro!: tendsto-eq-intros u[OF ‹i ∈ I ›] that)
moreover
have ((λx. g x (f x)) −−−→ g i (l i)) (at-left i) if i ∈ I a < i i ≤ b for i

by (rule tendstcomp) (auto intro!: tendsto-eq-intros l[OF ‹i ∈ I ›] that)
ultimately show ?thesis

by (intro piecewise-continuous-onI)
qed

lemma bounded-piecewise-continuous-image:
bounded (f ‘ {a .. b})
if piecewise-continuous-on a b I f for a b::real
using that

proof (induction rule: piecewise-continuous-on-induct)
case (empty a b f)
then show ?case by (auto intro!: compact-imp-bounded compact-continuous-image)

next
case (combine a i b I f1 f2 f)
have (f ‘ {a..b}) ⊆ (insert (f i) (f1 ‘ {a..i} ∪ f2 ‘ {i..b}))

using combine
by (auto simp: image-iff) (metis antisym-conv atLeastAtMost-iff le-cases not-less)

also have bounded . . .
using combine by auto

finally (bounded-subset[rotated]) show ?case .
qed

lemma tendsto-within-eventually:
(f −−−→ l) (at x within X)
if
(f −−−→ l) (at x within Y)
∀ F y in at x within X . y ∈ Y

using - that(1)
proof (rule tendsto-mono)

show at x within X ≤ at x within Y
proof (rule filter-leI)

fix P
assume eventually P (at x within Y)
with that(2) show eventually P (at x within X)

unfolding eventually-at-filter
by eventually-elim auto

qed
qed

lemma at-within-eq-bot-lemma:

18

at x within {b..c} = (if x < b ∨ b > c then bot else at x within {b..c})
for x b c:: ′a::linorder-topology
by (auto intro!: not-in-closure-trivial-limitI)

lemma at-within-eq-bot-lemma2 :
at x within {a..b} = (if x > b ∨ a > b then bot else at x within {a..b})
for x a b:: ′a::linorder-topology
by (auto intro!: not-in-closure-trivial-limitI)

lemma piecewise-continuous-on-combine:
piecewise-continuous-on a c J f
if piecewise-continuous-on a b J f piecewise-continuous-on b c J f
using that
apply (auto elim!: piecewise-continuous-onE)
subgoal for l u l ′ u ′

apply (rule piecewise-continuous-onI [where
l=λi. if i ≤ b then l i else l ′ i and
u=λi. if i < b then u i else u ′ i])

subgoal by force
subgoal

apply (rule continuous-on-subset[where s=({a .. b} ∪ {b .. c} − J)])
apply (auto simp: continuous-on-def at-within-t1-space-avoid-finite)
apply (rule Lim-Un)

subgoal by auto
subgoal by (subst at-within-eq-bot-lemma) auto
apply (rule Lim-Un)
subgoal by (subst at-within-eq-bot-lemma2) auto
subgoal by auto
done

by auto
done

lemma piecewise-continuous-on-finite-superset:
piecewise-continuous-on a b I f =⇒ I ⊆ J =⇒ finite J =⇒ piecewise-continuous-on

a b J f
for a b:: ′a::{linorder-topology, dense-order , no-bot, no-top}
apply (auto simp add: piecewise-continuous-on-def)

apply (rule continuous-on-subset, assumption, force)
subgoal for i

apply (cases i ∈ I)
apply (auto simp: continuous-on-def at-within-t1-space-avoid-finite)

apply (drule bspec[where x=i])
apply (auto simp: at-within-t1-space-avoid)

apply (cases i = b)
apply (auto simp: at-within-Icc-at-left)

apply (subst (asm) at-within-interior [where x=i])
by (auto simp: filterlim-at-split)

subgoal for i
apply (cases i ∈ I)

19

apply (auto simp: continuous-on-def at-within-t1-space-avoid-finite)
apply (drule bspec[where x=i])
apply (auto simp: at-within-t1-space-avoid)

apply (cases i = a)
apply (auto simp: at-within-Icc-at-right)

apply (subst (asm) at-within-interior [where x=i])
subgoal by (simp add: interior-Icc)
by (auto simp: filterlim-at-split)

done

lemma piecewise-continuous-on-splitI :
piecewise-continuous-on a c K f
if

piecewise-continuous-on a b I f
piecewise-continuous-on b c J f
I ⊆ K J ⊆ K finite K

for a b:: ′a::{linorder-topology, dense-order , no-bot, no-top}
apply (rule piecewise-continuous-on-combine[where b=b])
subgoal

by (rule piecewise-continuous-on-finite-superset, fact)
(use that in ‹auto elim!: piecewise-continuous-onE›)

subgoal
by (rule piecewise-continuous-on-finite-superset, fact)
(use that in ‹auto elim!: piecewise-continuous-onE›)

done

end

4 Existence
theory Existence imports

Piecewise-Continuous
begin

4.1 Definition
definition has-laplace :: (real ⇒ complex) ⇒ complex ⇒ complex ⇒ bool
(infixr ‹has ′-laplace› 46)
where (f has-laplace L) s ←→ ((λt. exp (t ∗R − s) ∗ f t) has-integral L) {0 ..}

lemma has-laplaceI :
assumes ((λt. exp (t ∗R − s) ∗ f t) has-integral L) {0 ..}
shows (f has-laplace L) s
using assms
by (auto simp: has-laplace-def)

lemma has-laplaceD:
assumes (f has-laplace L) s
shows ((λt. exp (t ∗R − s) ∗ f t) has-integral L) {0 ..}

20

using assms
by (auto simp: has-laplace-def)

lemma has-laplace-unique:
L = M if
(f has-laplace L) s
(f has-laplace M) s
using that
by (auto simp: has-laplace-def has-integral-unique)

4.2 Condition for Existence: Exponential Order
definition exponential-order M c f ←→ 0 < M ∧ (∀ F t in at-top. norm (f t) ≤
M ∗ exp (c ∗ t))

lemma exponential-orderI :
assumes 0 < M and eo: ∀ F t in at-top. norm (f t) ≤ M ∗ exp (c ∗ t)
shows exponential-order M c f
by (auto intro!: assms simp: exponential-order-def)

lemma exponential-orderD:
assumes exponential-order M c f
shows 0 < M ∀ F t in at-top. norm (f t) ≤ M ∗ exp (c ∗ t)
using assms by (auto simp: exponential-order-def)

context
fixes f ::real ⇒ complex

begin

definition laplace-integrand::complex ⇒ real ⇒ complex
where laplace-integrand s t = exp (t ∗R − s) ∗ f t

lemma laplace-integrand-absolutely-integrable-on-Icc:
laplace-integrand s absolutely-integrable-on {a..b}
if AE x∈{a..b} in lebesgue. cmod (f x) ≤ B f integrable-on {a..b}
apply (cases b ≤ a)
subgoal by (auto intro!: absolutely-integrable-onI integrable-negligible[OF negli-

gible-real-ivlI])
proof goal-cases

case 1
have compact ((λx. exp (− (x ∗R s))) ‘ {a .. b})

by (rule compact-continuous-image) (auto intro!: continuous-intros)
then obtain C where C : 0 ≤ C a ≤ x =⇒ x ≤ b =⇒ cmod (exp (− (x ∗R s)))
≤ C for x

using 1
apply (auto simp: bounded-iff dest!: compact-imp-bounded)

by (metis atLeastAtMost-iff exp-ge-zero order-refl order-trans scaleR-complex.sel(1))

have m: (λx. indicator {a..b} x ∗R f x) ∈ borel-measurable lebesgue

21

apply (rule has-integral-implies-lebesgue-measurable)
apply (rule integrable-integral)
apply (rule that)
done

have complex-set-integrable lebesgue {a..b} (λx. exp (− (x ∗R s)) ∗ (indicator {a
.. b} x ∗R f x))

unfolding set-integrable-def
apply (rule integrableI-bounded-set-indicator [where B=C ∗ B])

apply (simp; fail)
apply (rule borel-measurable-times)
apply measurable
apply (simp add: measurable-completion)

apply (simp add: measurable-completion)
apply (rule m)

apply (simp add: emeasure-lborel-Icc-eq)
using that(1)
apply eventually-elim
apply (auto simp: norm-mult)
apply (rule mult-mono)
using C
by auto

then show ?case
unfolding set-integrable-def
by (simp add: laplace-integrand-def [abs-def] indicator-inter-arith[symmetric])

qed

lemma laplace-integrand-integrable-on-Icc:
laplace-integrand s integrable-on {a..b}
if AE x∈{a..b} in lebesgue. cmod (f x) ≤ B f integrable-on {a..b}
using laplace-integrand-absolutely-integrable-on-Icc[OF that]
using set-lebesgue-integral-eq-integral(1) by blast

lemma eventually-laplace-integrand-le:
∀ F t in at-top. cmod (laplace-integrand s t) ≤ M ∗ exp (− (Re s − c) ∗ t)
if exponential-order M c f
using exponential-orderD(2)[OF that]

proof (eventually-elim)
case (elim t)
show ?case

unfolding laplace-integrand-def
apply (rule norm-mult-ineq[THEN order-trans])
apply (auto intro!: mult-left-mono[THEN order-trans, OF elim])
apply (auto simp: exp-minus divide-simps algebra-simps exp-add[symmetric])
done

qed

lemma
assumes eo: exponential-order M c f

and cs: c < Re s

22

shows laplace-integrand-integrable-on-Ici-iff :
laplace-integrand s integrable-on {a..} ←→
(∀ k>a. laplace-integrand s integrable-on {a..k})

(is ?th1)
and laplace-integrand-absolutely-integrable-on-Ici-iff :

laplace-integrand s absolutely-integrable-on {a..} ←→
(∀ k>a. laplace-integrand s absolutely-integrable-on {a..k})

(is ?th2)
proof −

have ∀ F t in at-top. a < (t::real)
using eventually-gt-at-top by blast

then have ∀ F t in at-top. t > a ∧ cmod (laplace-integrand s t) ≤ M ∗ exp (−
(Re s − c) ∗ t)

using eventually-laplace-integrand-le[OF eo]
by eventually-elim (auto)

then obtain A where A: A > a and le: t ≥ A =⇒ cmod (laplace-integrand s
t) ≤ M ∗ exp (− (Re s − c) ∗ t) for t

unfolding eventually-at-top-linorder
by blast

let ?f = λ(k::real) (t::real). indicat-real {A..k} t ∗R laplace-integrand s t

from exponential-orderD[OF eo] have M 6= 0 by simp
have 2 : (λt. M ∗ exp (− (Re s − c) ∗ t)) integrable-on {A..}

unfolding integrable-on-cmult-iff [OF ‹M 6= 0 ›] norm-exp-eq-Re
by (rule integrable-on-exp-minus-to-infinity) (simp add: cs)

have 3 : t∈{A..} =⇒ cmod (?f k t) ≤ M ∗ exp (− (Re s − c) ∗ t)
(is t∈-=⇒ ?lhs t ≤ ?rhs t)
for t k

proof safe
fix t assume A ≤ t
have ?lhs t ≤ cmod (laplace-integrand s t)

by (auto simp: indicator-def)
also have . . . ≤ ?rhs t using ‹A ≤ t› le by (simp add: laplace-integrand-def)
finally show ?lhs t ≤ ?rhs t .

qed

have 4 : ∀ t∈{A..}. ((λk. ?f k t) −−−→ laplace-integrand s t) at-top
proof safe

fix t assume t: t ≥ A
have ∀ F k in at-top. k ≥ t

by (simp add: eventually-ge-at-top)
then have ∀ F k in at-top. laplace-integrand s t = ?f k t

by eventually-elim (use t in ‹auto simp: indicator-def ›)
then show ((λk. ?f k t) −−−→ laplace-integrand s t) at-top using tendsto-const

by (rule Lim-transform-eventually[rotated])
qed

23

show th1 : ?th1
proof safe

assume ∀ k>a. laplace-integrand s integrable-on {a..k}
note li = this[rule-format]
have liA: laplace-integrand s integrable-on {A..k} for k
proof cases

assume k ≤ A
then have {A..k} = (if A = k then {k} else {}) by auto
then show ?thesis by (auto intro!: integrable-negligible)

next
assume n: ¬ k ≤ A
show ?thesis

by (rule integrable-on-subinterval[OF li[of k]]) (use A n in auto)
qed
have ?f k integrable-on {A..k} for k

using liA[of k] negligible-empty
by (rule integrable-spike) auto

then have 1 : ?f k integrable-on {A..} for k
by (rule integrable-on-superset) auto

note 1 2 3 4
note ∗ = this[unfolded set-integrable-def]
from li[of A] dominated-convergence-at-top(1)[OF ∗]
show laplace-integrand s integrable-on {a..}

by (rule integrable-Un ′) (use ‹a < A› in ‹auto simp: max-def li›)
qed (rule integrable-on-subinterval, assumption, auto)

show ?th2
proof safe

assume ai: ∀ k>a. laplace-integrand s absolutely-integrable-on {a..k}
then have laplace-integrand s absolutely-integrable-on {a..A}

using A by auto
moreover
from ai have ∀ k>a. laplace-integrand s integrable-on {a..k}

using set-lebesgue-integral-eq-integral(1) by blast
with th1 have i: laplace-integrand s integrable-on {a..} by auto
have 1 : ?f k integrable-on {A..} for k

apply (rule integrable-on-superset[where S={A..k}])
using - negligible-empty

apply (rule integrable-spike[where f=laplace-integrand s])
apply (rule integrable-on-subinterval)
apply (rule i)

by (use ‹a < A› in auto)
have laplace-integrand s absolutely-integrable-on {A..}

using - dominated-convergence-at-top(1)[OF 1 2 3 4] 2
by (rule absolutely-integrable-integrable-bound) (use le in auto)

ultimately
have laplace-integrand s absolutely-integrable-on ({a..A} ∪ {A..})

by (rule set-integrable-Un) auto
also have {a..A} ∪ {A..} = {a..} using ‹a < A› by auto

24

finally show local.laplace-integrand s absolutely-integrable-on {a..} .
qed (rule set-integrable-subset, assumption, auto)

qed

theorem laplace-exists-laplace-integrandI :
assumes laplace-integrand s integrable-on {0 ..}
obtains F where (f has-laplace F) s

proof −
from assms
have (f has-laplace integral {0 ..} (laplace-integrand s)) s

unfolding has-laplace-def laplace-integrand-def by blast
thus ?thesis ..

qed

lemma
assumes eo: exponential-order M c f

and pc:
∧

k. AE x∈{0 ..k} in lebesgue. cmod (f x) ≤ B k
∧

k. f integrable-on
{0 ..k}

and s: Re s > c
shows laplace-integrand-integrable: laplace-integrand s integrable-on {0 ..} (is

?th1)
and laplace-integrand-absolutely-integrable:

laplace-integrand s absolutely-integrable-on {0 ..} (is ?th2)
using eo laplace-integrand-absolutely-integrable-on-Icc[OF pc] s
by (auto simp: laplace-integrand-integrable-on-Ici-iff

laplace-integrand-absolutely-integrable-on-Ici-iff
set-lebesgue-integral-eq-integral)

lemma piecewise-continuous-on-AE-boundedE :
assumes pc:

∧
k. piecewise-continuous-on a k (I k) f

obtains B where
∧

k. AE x∈{a..k} in lebesgue. cmod (f x) ≤ B k
apply atomize-elim
apply (rule choice)
apply (rule allI)
subgoal for k

using bounded-piecewise-continuous-image[OF pc[of k]]
by (force simp: bounded-iff)

done

theorem piecewise-continuous-on-has-laplace:
assumes eo: exponential-order M c f

and pc:
∧

k. piecewise-continuous-on 0 k (I k) f
and s: Re s > c

obtains F where (f has-laplace F) s
proof −

from piecewise-continuous-on-AE-boundedE [OF pc]
obtain B where AE : AE x∈{0 ..k} in lebesgue. cmod (f x) ≤ B k for k by force
have int: f integrable-on {0 ..k} for k

using pc

25

by (rule piecewise-continuous-on-integrable)
show ?thesis

using pc
apply (rule piecewise-continuous-on-AE-boundedE)
apply (rule laplace-exists-laplace-integrandI)
apply (rule laplace-integrand-integrable)

apply (rule eo)
apply assumption

apply (rule int)
apply (rule s)

by (rule that)
qed

end

4.3 Concrete Laplace Transforms
lemma exp-scaleR-has-vector-derivative-left ′[derivative-intros]:
((λt. exp (t ∗R A)) has-vector-derivative A ∗ exp (t ∗R A)) (at t within S)
by (metis exp-scaleR-has-vector-derivative-right exp-times-scaleR-commute)

lemma
fixes a::complex— TODO: generalize
assumes a: 0 < Re a
shows integrable-on-cexp-minus-to-infinity: (λx. exp (x ∗R − a)) integrable-on
{c..}

and integral-cexp-minus-to-infinity: integral {c..} (λx. exp (x ∗R − a)) = exp
(c ∗R − a) / a
proof −

from a have a 6= 0 by auto
define f where f = (λk x. if x ∈ {c..real k} then exp (x ∗R −a) else 0)
{

fix k :: nat assume k: of-nat k ≥ c
from ‹a 6= 0 › k

have ((λx. exp (x ∗R −a)) has-integral (−exp (k ∗R −a)/a − (−exp (c ∗R
−a)/a))) {c..real k}

by (intro fundamental-theorem-of-calculus)
(auto intro!: derivative-eq-intros exp-scaleR-has-vector-derivative-left

simp: divide-inverse-commute
simp del: scaleR-minus-left scaleR-minus-right)

hence (f k has-integral (exp (c ∗R −a)/a − exp (k ∗R −a)/a)) {c..} unfolding
f-def

by (subst has-integral-restrict) simp-all
} note has-integral-f = this

have integrable-fk: f k integrable-on {c..} for k
proof −

have (λx. exp (x ∗R −a)) integrable-on {c..of-real k} (is ?P)
unfolding f-def by (auto intro!: continuous-intros integrable-continuous-real)

26

then have int: (f k) integrable-on {c..of-real k}
by (rule integrable-eq) (simp add: f-def)

show ?thesis
by (rule integrable-on-superset[OF int]) (auto simp: f-def)

qed
have limseq:

∧
x. x ∈{c..} =⇒ (λk. f k x) −−−−→ exp (x ∗R − a)

apply (auto intro!: Lim-transform-eventually[OF tendsto-const] simp: f-def)
by (meson eventually-sequentiallyI nat-ceiling-le-eq)

have bnd:
∧

x. x ∈ {c..} =⇒ cmod (f k x) ≤ exp (− Re a ∗ x) for k
by (auto simp: f-def)

have [simp]: f k = (λ-. 0) if of-nat k < c for k using that by (auto simp:
fun-eq-iff f-def)

have integral-f : integral {c..} (f k) =
(if real k ≥ c then exp (c ∗R −a)/a − exp (k ∗R −a)/a else 0)

for k using integral-unique[OF has-integral-f [of k]] by simp

have (λk. exp (c ∗R −a)/a − exp (k ∗R −a)/a) −−−−→ exp (c∗R−a)/a − 0/a
apply (intro tendsto-intros filterlim-compose[OF exp-at-bot]

filterlim-tendsto-neg-mult-at-bot[OF tendsto-const] filterlim-real-sequentially)+
apply (rule tendsto-norm-zero-cancel)

by (auto intro!: assms ‹a 6= 0 › filterlim-real-sequentially
filterlim-compose[OF exp-at-bot] filterlim-compose[OF filterlim-uminus-at-bot-at-top]

filterlim-at-top-mult-tendsto-pos[OF tendsto-const])
moreover
note A = dominated-convergence[where g=λx. exp (x ∗R −a),

OF integrable-fk integrable-on-exp-minus-to-infinity[where a=Re a and c=c,
OF ‹0 < Re a›]

bnd limseq]
from A(1) show (λx. exp (x ∗R − a)) integrable-on {c..} .
from eventually-gt-at-top[of nat dce] have eventually (λk. of-nat k > c) sequen-

tially
by eventually-elim linarith

hence eventually (λk. exp (c ∗R −a)/a − exp (k ∗R −a)/a = integral {c..} (f
k)) sequentially

by eventually-elim (simp add: integral-f)
ultimately have (λk. integral {c..} (f k)) −−−−→ exp (c ∗R −a)/a − 0/a

by (rule Lim-transform-eventually)
from LIMSEQ-unique[OF A(2) this]
show integral {c..} (λx. exp (x ∗R −a)) = exp (c ∗R −a)/a by simp

qed

lemma has-integral-cexp-minus-to-infinity:
fixes a::complex— TODO: generalize
assumes a: 0 < Re a
shows ((λx. exp (x ∗R − a)) has-integral exp (c ∗R − a) / a) {c..}
using integral-cexp-minus-to-infinity[OF assms]

integrable-on-cexp-minus-to-infinity[OF assms]
using has-integral-integrable-integral by blast

27

lemma has-laplace-one:
((λ-. 1) has-laplace inverse s) s if Re s > 0

proof (safe intro!: has-laplaceI)
from that have ((λt. exp (t ∗R − s)) has-integral inverse s) {0 ..}

by (rule has-integral-cexp-minus-to-infinity[THEN has-integral-eq-rhs])
(auto simp: inverse-eq-divide)

then show ((λt. exp (t ∗R − s) ∗ 1) has-integral inverse s) {0 ..} by simp
qed

lemma has-laplace-add:
assumes f : (f has-laplace F) S
assumes g: (g has-laplace G) S
shows ((λx. f x + g x) has-laplace F + G) S
apply (rule has-laplaceI)
using has-integral-add[OF has-laplaceD[OF f] has-laplaceD[OF g]]
by (auto simp: algebra-simps)

lemma has-laplace-cmul:
assumes (f has-laplace F) S
shows ((λx. r ∗R f x) has-laplace r ∗R F) S
apply (rule has-laplaceI)
using has-laplaceD[OF assms, THEN has-integral-cmul[where c=r]]
by auto

lemma has-laplace-uminus:
assumes (f has-laplace F) S
shows ((λx. − f x) has-laplace − F) S
using has-laplace-cmul[OF assms, of −1]
by auto

lemma has-laplace-minus:
assumes f : (f has-laplace F) S
assumes g: (g has-laplace G) S
shows ((λx. f x − g x) has-laplace F − G) S
using has-laplace-add[OF f has-laplace-uminus[OF g]]
by simp

lemma has-laplace-spike:
(f has-laplace L) s
if L: (g has-laplace L) s

and negligible T
and

∧
t. t /∈ T =⇒ t ≥ 0 =⇒ f t = g t

by (auto intro!: has-laplaceI has-integral-spike[where S=T , OF - - has-laplaceD[OF
L]] that)

lemma has-laplace-frequency-shift:— First Translation Theorem in Schiff
((λt. exp (t ∗R b) ∗ f t) has-laplace L) s

28

if (f has-laplace L) (s − b)
using that
by (auto intro!: has-laplaceI dest!: has-laplaceD

simp: mult-exp-exp algebra-simps)

theorem has-laplace-derivative-time-domain:
(f ′ has-laplace s ∗ L − f0) s
if L: (f has-laplace L) s

and f ′:
∧

t. t > 0 =⇒ (f has-vector-derivative f ′ t) (at t)
and f0 : (f −−−→ f0) (at-right 0)
and eo: exponential-order M c f
and cs: c < Re s

— Proof and statement follow "The Laplace Transform: Theory and Applications"
by Joel L. Schiff.
proof (rule has-laplaceI)

have ce: continuous-on S (λt. exp (t ∗R − s)) for S
by (auto intro!: continuous-intros)

have de: ((λt. exp (t ∗R − s)) has-vector-derivative (− s ∗ exp (− (t ∗R s))))
(at t) for t

by (auto simp: has-vector-derivative-def intro!: derivative-eq-intros ext)
have ((λx. −s ∗ (f x ∗ exp (− (x ∗R s)))) has-integral − s ∗ L) {0 ..}

apply (rule has-integral-mult-right)
using has-laplaceD[OF L]
by (auto simp: ac-simps)

define g where g x = (if x ≤ 0 then f0 else f x) for x

have eog: exponential-order M c g
proof −

from exponential-orderD[OF eo] have 0 < M
and ev: ∀ F t in at-top. cmod (f t) ≤ M ∗ exp (c ∗ t) .

have ∀ F t::real in at-top. t > 0 by simp
with ev have ∀ F t in at-top. cmod (g t) ≤ M ∗ exp (c ∗ t)

by eventually-elim (auto simp: g-def)
with ‹0 < M › show ?thesis

by (rule exponential-orderI)
qed
have Lg: (g has-laplace L) s

using L
by (rule has-laplace-spike[where T={0}]) (auto simp: g-def)

have g ′:
∧

t. 0 < t =⇒ (g has-vector-derivative f ′ t) (at t)
using f ′

by (rule has-vector-derivative-transform-within-open[where S={0<..}]) (auto
simp: g-def)

have cg: continuous-on {0 ..k} g for k
apply (auto simp: g-def continuous-on-def)
apply (rule filterlim-at-within-If)

subgoal by (rule tendsto-intros)
subgoal

29

apply (rule tendsto-within-subset)
apply (rule f0)

by auto
subgoal premises prems for x
proof −

from prems have 0 < x by auto
from order-tendstoD[OF tendsto-ident-at this]
have eventually ((<) 0) (at x within {0 ..k}) by auto
then have ∀ F x in at x within {0 ..k}. f x = (if x ≤ 0 then f0 else f x)

by eventually-elim auto
moreover
note [simp] = at-within-open[where S={0<..}]
have continuous-on {0<..} f

by (rule continuous-on-vector-derivative)
(auto simp add: intro!: f ′)

then have (f −−−→ f x) (at x within {0 ..k})
using ‹0 < x›
by (auto simp: continuous-on-def intro: Lim-at-imp-Lim-at-within)

ultimately show ?thesis
by (rule Lim-transform-eventually[rotated])

qed
done

then have pcg: piecewise-continuous-on 0 k {} g for k
by (auto simp: piecewise-continuous-on-def)

from piecewise-continuous-on-AE-boundedE [OF this]
obtain B where B: AE x∈{0 ..k} in lebesgue. cmod (g x) ≤ B k for k by auto
have 1 : laplace-integrand g s absolutely-integrable-on {0 ..}

apply (rule laplace-integrand-absolutely-integrable[OF eog])
apply (rule B)

apply (rule piecewise-continuous-on-integrable)
apply (rule pcg)

apply (rule cs)
done

then have csi: complex-set-integrable lebesgue {0 ..} (λx. exp (x ∗R − s) ∗ g x)
by (auto simp: laplace-integrand-def [abs-def])

from has-laplaceD[OF Lg, THEN has-integral-improperE , OF csi]
obtain J where J :

∧
k. ((λt. exp (t ∗R − s) ∗ g t) has-integral J k) {0 ..k}

and [tendsto-intros]: (J −−−→ L) at-top
by auto

have ((λx. −s ∗ (exp (x ∗R − s) ∗ g x)) has-integral −s ∗ J k) {0 ..k} for k
by (rule has-integral-mult-right) (rule J)

then have ∗: ((λx. g x ∗ (− s ∗ exp (− (x ∗R s)))) has-integral −s ∗ J k) {0 ..k}
for k

by (auto simp: algebra-simps)
have ∀ F k::real in at-top. k ≥ 0

using eventually-ge-at-top by blast
then have evI : ∀ F k in at-top. ((λt. exp (t ∗R − s) ∗ f ′ t) has-integral

g k ∗ exp (k ∗R − s) + s ∗ J k − g 0) {0 ..k}
proof eventually-elim

30

case (elim k)
show ?case

apply (subst mult.commute)
apply (rule integration-by-parts-interior [OF bounded-bilinear-mult], fact)
apply (rule cg) apply (rule ce) apply (rule g ′) apply force apply (rule de)
apply (rule has-integral-eq-rhs)
apply (rule ∗)

by auto
qed
have t1 : ((λx. g x ∗ exp (x ∗R − s)) −−−→ 0) at-top

apply (subst mult.commute)
unfolding laplace-integrand-def [symmetric]
apply (rule Lim-null-comparison)
apply (rule eventually-laplace-integrand-le[OF eog])
apply (rule tendsto-mult-right-zero)
apply (rule filterlim-compose[OF exp-at-bot])
apply (rule filterlim-tendsto-neg-mult-at-bot)

apply (rule tendsto-intros)
using cs apply simp
apply (rule filterlim-ident)
done

show ((λt. exp (t ∗R − s) ∗ f ′ t) has-integral s ∗ L − f0) {0 ..}
apply (rule has-integral-improper-at-topI [OF evI])
subgoal

apply (rule tendsto-eq-intros)
apply (rule tendsto-intros)
apply (rule t1)

apply (rule tendsto-intros)
apply (rule tendsto-intros)

apply (rule tendsto-intros)
apply (rule tendsto-intros)

by (simp add: g-def)
done

qed

lemma exp-times-has-integral:
((λt. exp (c ∗ t)) has-integral (if c = 0 then t else exp (c ∗ t) / c) − (if c = 0

then t0 else exp (c ∗ t0) / c)) {t0 .. t}
if t0 ≤ t
for c t::real
apply (cases c = 0)
subgoal

using that
apply auto
apply (rule has-integral-eq-rhs)
apply (rule has-integral-const-real)

by auto
subgoal

apply (rule fundamental-theorem-of-calculus)

31

using that
by (auto simp: has-vector-derivative-def intro!: derivative-eq-intros)

done

lemma integral-exp-times:
integral {t0 .. t} (λt. exp (c ∗ t)) = (if c = 0 then t − t0 else exp (c ∗ t) / c −

exp (c ∗ t0) / c)
if t0 ≤ t
for c t::real
using exp-times-has-integral[OF that, of c] that
by (auto split: if-splits)

lemma filtermap-times-pos-at-top: filtermap ((∗) e) at-top = at-top
if e > 0
for e::real
apply (rule filtermap-fun-inverse[of (∗) (inverse e)])

apply (rule filterlim-tendsto-pos-mult-at-top)
apply (rule tendsto-intros)

subgoal using that by simp
apply (rule filterlim-ident)
apply (rule filterlim-tendsto-pos-mult-at-top)

apply (rule tendsto-intros)
subgoal using that by simp
apply (rule filterlim-ident)

using that by auto

lemma exponential-order-additiveI :
assumes 0 < M and eo: ∀ F t in at-top. norm (f t) ≤ K + M ∗ exp (c ∗ t) and

c ≥ 0
obtains M ′ where exponential-order M ′ c f

proof −
consider c = 0 | c > 0 using ‹c ≥ 0 › by arith
then show ?thesis
proof cases

assume c = 0
have exponential-order (max K 0 + M) c f

using eo
apply (auto intro!: exponential-orderI add-nonneg-pos ‹0 < M › simp: ‹c =

0 ›)
apply (auto simp: max-def)
using eventually-elim2 by force

then show ?thesis ..
next

assume c > 0
have ∀ F t in at-top. norm (f t) ≤ K + M ∗ exp (c ∗ t)

by fact
moreover
have ∀ F t in (filtermap exp (filtermap ((∗) c) at-top)). K < t

by (simp add: filtermap-times-pos-at-top ‹c > 0 › filtermap-exp-at-top)

32

then have ∀ F t in at-top. K < exp (c ∗ t)
by (simp add: eventually-filtermap)

ultimately
have ∀ F t in at-top. norm (f t) ≤ (1 + M) ∗ exp (c ∗ t)

by eventually-elim (auto simp: algebra-simps)
with add-nonneg-pos[OF zero-le-one ‹0 < M ›]
have exponential-order (1 + M) c f

by (rule exponential-orderI)
then show ?thesis ..

qed
qed

lemma exponential-order-integral:
fixes f ::real ⇒ ′a::banach
assumes I :

∧
t. t ≥ a =⇒ (f has-integral I t) {a .. t}

and eo: exponential-order M c f
and c > 0

obtains M ′ where exponential-order M ′ c I
proof −

from exponential-orderD[OF eo] have 0 < M
and bound: ∀ F t in at-top. norm (f t) ≤ M ∗ exp (c ∗ t)
by auto

have ∀ F t in at-top. t > a
by simp

from bound this
have ∀ F t in at-top. norm (f t) ≤ M ∗ exp (c ∗ t) ∧ t > a

by eventually-elim auto
then obtain t0 where t0 :

∧
t. t ≥ t0 =⇒ norm (f t) ≤ M ∗ exp (c ∗ t) t0 > a

by (auto simp: eventually-at-top-linorder)
have ∀ F t in at-top. t > t0 by simp
then have ∀ F t in at-top. norm (I t) ≤ norm (integral {a..t0} f) − M ∗ exp (c
∗ t0) / c + (M / c) ∗ exp (c ∗ t)

proof eventually-elim
case (elim t) then have that: t ≥ t0 by simp
from t0 have a ≤ t0 by simp
have f integrable-on {a .. t0} f integrable-on {t0 .. t}

subgoal by (rule has-integral-integrable[OF I [OF ‹a ≤ t0 ›]])
subgoal
apply (rule integrable-on-subinterval[OF has-integral-integrable[OF I [where

t=t]]])
using ‹t0 > a› that by auto

done
have I t = integral {a .. t0} f + integral {t0 .. t} f
by (metis Henstock-Kurzweil-Integration.integral-combine I ‹a ≤ t0 › dual-order .strict-trans

has-integral-integrable-integral less-eq-real-def that)
also have norm . . . ≤ norm (integral {a .. t0} f) + norm (integral {t0 .. t}

f) by norm
also
have norm (integral {t0 .. t} f) ≤ integral {t0 .. t} (λt. M ∗ exp (c ∗ t))

33

apply (rule integral-norm-bound-integral)
apply fact

by (auto intro!: integrable-continuous-interval continuous-intros t0)
also have . . . = M ∗ integral {t0 .. t} (λt. exp (c ∗ t))

by simp
also have integral {t0 .. t} (λt. exp (c ∗ t)) = exp (c ∗ t) / c − exp (c ∗ t0)

/ c
using ‹c > 0 › ‹t0 ≤ t›
by (subst integral-exp-times) auto

finally show ?case
using ‹c > 0 ›
by (auto simp: algebra-simps)

qed
from exponential-order-additiveI [OF divide-pos-pos[OF ‹0 < M › ‹0 < c›] this

less-imp-le[OF ‹0 < c›]]
obtain M ′ where exponential-order M ′ c I .
then show ?thesis ..

qed

lemma integral-has-vector-derivative-piecewise-continuous:
fixes f :: real ⇒ ′a::euclidean-space— TODO: generalize?
assumes piecewise-continuous-on a b D f
shows

∧
x. x ∈ {a .. b} − D =⇒

((λu. integral {a..u} f) has-vector-derivative f (x)) (at x within {a..b} − D)
using assms

proof (induction a b D f rule: piecewise-continuous-on-induct)
case (empty a b f)
then show ?case

by (auto intro: integral-has-vector-derivative)
next

case (combine a i b I f1 f2 f)
then consider x < i | i < x by auto arith

then show ?case
proof cases— TODO: this is very explicit...

case 1
have evless: ∀ F xa in nhds x. xa < i

apply (rule order-tendstoD[OF - ‹x < i›])
by (simp add: filterlim-ident)

have eq: at x within {a..b} − insert i I = at x within {a .. i} − I
unfolding filter-eq-iff

proof safe
fix P
assume eventually P (at x within {a..i} − I)
with evless show eventually P (at x within {a..b} − insert i I)

unfolding eventually-at-filter
by eventually-elim auto

next
fix P

34

assume eventually P (at x within {a..b} − insert i I)
with evless show eventually P (at x within {a..i} − I)

unfolding eventually-at-filter
apply eventually-elim
using 1 combine
by auto

qed
have f x = f1 x using combine 1 by auto
have i-eq: integral {a..y} f = integral {a..y} f1 if y < i for y

using negligible-empty
apply (rule integral-spike)
using combine 1 that
by auto

from evless have ev-eq: ∀ F x in nhds x. x ∈ {a..i} − I −→ integral {a..x} f
= integral {a..x} f1

by eventually-elim (auto simp: i-eq)
show ?thesis unfolding eq ‹f x = f1 x›

apply (subst has-vector-derivative-cong-ev[OF ev-eq])
using combine.IH [of x]
using combine.hyps combine.prems 1
by (auto simp: i-eq)

next
case 2
have evless: ∀ F xa in nhds x. xa > i

apply (rule order-tendstoD[OF - ‹x > i›])
by (simp add: filterlim-ident)

have eq: at x within {a..b} − insert i I = at x within {i .. b} − I
unfolding filter-eq-iff

proof safe
fix P
assume eventually P (at x within {i..b} − I)
with evless show eventually P (at x within {a..b} − insert i I)

unfolding eventually-at-filter
by eventually-elim auto

next
fix P
assume eventually P (at x within {a..b} − insert i I)
with evless show eventually P (at x within {i..b} − I)

unfolding eventually-at-filter
apply eventually-elim
using 2 combine
by auto

qed
have f x = f2 x using combine 2 by auto
have i-eq: integral {a..y} f = integral {a..i} f + integral {i..y} f2 if i < y y

≤ b for y
proof −

have integral {a..y} f = integral {a..i} f + integral {i..y} f
apply (cases i = y)

35

subgoal by auto
subgoal

apply (rule Henstock-Kurzweil-Integration.integral-combine[symmetric])
using combine that apply auto
apply (rule integrable-Un ′[where A={a .. i} and B={i..y}])
subgoal

by (rule integrable-spike[where S={i} and f=f1])
(auto intro: piecewise-continuous-on-integrable)

subgoal
apply (rule integrable-on-subinterval[where S={i..b}])
by (rule integrable-spike[where S={i} and f=f2])
(auto intro: piecewise-continuous-on-integrable)

subgoal by (auto simp: max-def min-def)
subgoal by auto
done

done
also have integral {i..y} f = integral {i..y} f2

apply (rule integral-spike[where S={i}])
using combine 2 that
by auto

finally show ?thesis .
qed
from evless have ev-eq: ∀ F y in nhds x. y ∈ {i..b} − I −→ integral {a..y} f

= integral {a..i} f + integral {i..y} f2
by eventually-elim (auto simp: i-eq)

show ?thesis unfolding eq
apply (subst has-vector-derivative-cong-ev[OF ev-eq])
using combine.IH [of x] combine.prems combine.hyps 2
by (auto simp: i-eq intro!: derivative-eq-intros)

qed
qed (auto intro: has-vector-derivative-within-subset)

lemma has-derivative-at-split:
(f has-derivative f ′) (at x) ←→ (f has-derivative f ′) (at-left x) ∧ (f has-derivative

f ′) (at-right x)
for x:: ′a::{linorder-topology, real-normed-vector}
by (auto simp: has-derivative-at-within filterlim-at-split)

lemma has-vector-derivative-at-split:
(f has-vector-derivative f ′) (at x) ←→
(f has-vector-derivative f ′) (at-left x) ∧
(f has-vector-derivative f ′) (at-right x)

using has-derivative-at-split[of f λh. h ∗R f ′ x]
by (simp add: has-vector-derivative-def)

lemmas differentiableI-vector [intro]

lemma differentiable-at-splitD:
f differentiable at-left x

36

f differentiable at-right x
if f differentiable (at x)
for x::real
using that[unfolded vector-derivative-works has-vector-derivative-at-split]
by auto

lemma integral-differentiable:
fixes f :: real ⇒ ′a::banach
assumes continuous-on {a..b} f

and x ∈ {a..b}
shows (λu. integral {a..u} f) differentiable at x within {a..b}
using integral-has-vector-derivative[OF assms]
by blast

theorem integral-has-vector-derivative-piecewise-continuous ′:
fixes f :: real ⇒ ′a::euclidean-space— TODO: generalize?
assumes piecewise-continuous-on a b D f a < b
shows
(∀ x. a < x −→ x < b −→ x /∈ D −→ (λu. integral {a..u} f) differentiable at

x) ∧
(∀ x. a ≤ x −→ x < b −→ (λt. integral {a..t} f) differentiable at-right x) ∧
(∀ x. a < x −→ x ≤ b −→ (λt. integral {a..t} f) differentiable at-left x)

using assms
proof (induction a b D f rule: piecewise-continuous-on-induct)

case (empty a b f)
have a < x =⇒ x < b =⇒ (λu. integral {a..u} f) differentiable (at x) for x

using integral-differentiable[OF empty(1), of x]
by (auto simp: at-within-interior)

then show ?case
using integral-differentiable[OF empty(1), of a]

integral-differentiable[OF empty(1), of b]
‹a < b›

by (auto simp: at-within-Icc-at-right at-within-Icc-at-left le-less
intro: differentiable-at-withinI)

next
case (combine a i b I f1 f2 f)
from ‹piecewise-continuous-on a i I f1 › have finite I

by (auto elim!: piecewise-continuous-onE)

from combine(4) have piecewise-continuous-on a i (insert i I) f1
by (rule piecewise-continuous-on-insert-rightI)

then have piecewise-continuous-on a i (insert i I) f
by (rule piecewise-continuous-on-congI) (auto simp: combine)

moreover
from combine(5) have piecewise-continuous-on i b (insert i I) f2

by (rule piecewise-continuous-on-insert-leftI)
then have piecewise-continuous-on i b (insert i I) f

by (rule piecewise-continuous-on-congI) (auto simp: combine)
ultimately have piecewise-continuous-on a b (insert i I) f

37

by (rule piecewise-continuous-on-combine)
then have f-int: f integrable-on {a .. b}

by (rule piecewise-continuous-on-integrable)

from combine.IH
have f1 : x>a =⇒ x < i =⇒ x /∈ I =⇒ (λu. integral {a..u} f1) differentiable (at

x)
x≥a =⇒ x < i =⇒ (λt. integral {a..t} f1) differentiable (at-right x)
x>a =⇒ x ≤ i =⇒ (λt. integral {a..t} f1) differentiable (at-left x)

and f2 : x>i =⇒ x < b =⇒ x /∈ I =⇒ (λu. integral {i..u} f2) differentiable (at
x)

x≥i =⇒ x < b =⇒ (λt. integral {i..t} f2) differentiable (at-right x)
x>i =⇒ x ≤ b =⇒ (λt. integral {i..t} f2) differentiable (at-left x)
for x
by auto

have (λu. integral {a..u} f) differentiable at x if a < x x < b x 6= i x /∈ I for x
proof −

from that consider x < i |i < x by arith
then show ?thesis
proof cases

case 1
have at: at x within {a<..<i} − I = at x

using that 1
by (intro at-within-open) (auto intro!: open-Diff finite-imp-closed ‹finite I ›)

then have (λu. integral {a..u} f1) differentiable at x within {a<..<i} − I
using that 1 f1 by auto

then have (λu. integral {a..u} f) differentiable at x within {a<..<i} − I
apply (rule differentiable-transform-within[OF - zero-less-one])
using that combine.hyps 1 by (auto intro!: integral-cong)

then show ?thesis by (simp add: at)
next

case 2
have at: at x within {i<..<b} − I = at x

using that 2
by (intro at-within-open) (auto intro!: open-Diff finite-imp-closed ‹finite I ›)

then have (λu. integral {a..i} f + integral {i..u} f2) differentiable at x within
{i<..<b} − I

using that 2 f2 by auto
then have (λu. integral {a..i} f + integral {i..u} f) differentiable at x within

{i<..<b} − I
apply (rule differentiable-transform-within[OF - zero-less-one])
using that combine.hyps 2 by (auto intro!: integral-spike[where S={i,x}])

then have (λu. integral {a..u} f) differentiable at x within {i<..<b} − I
apply (rule differentiable-transform-within[OF - zero-less-one])
subgoal using that 2 by auto
apply auto
apply (subst Henstock-Kurzweil-Integration.integral-combine)
using that 2 ‹a ≤ i›

38

apply auto
by (auto intro: integrable-on-subinterval f-int)

then show ?thesis by (simp add: at)
qed

qed
moreover
have (λt. integral {a..t} f) differentiable at-right x if a ≤ x x < b for x
proof −

from that consider x < i |i ≤ x by arith
then show ?thesis
proof cases

case 1
have at: at x within {x..i} = at-right x

using ‹x < i› by (rule at-within-Icc-at-right)
then have (λu. integral {a..u} f1) differentiable at x within {x..i}

using that 1 f1 by auto
then have (λu. integral {a..u} f) differentiable at x within {x..i}

apply (rule differentiable-transform-within[OF - zero-less-one])
using that combine.hyps 1 by (auto intro!: integral-spike[where S={i,x}])

then show ?thesis by (simp add: at)
next

case 2
have at: at x within {x..b} = at-right x

using ‹x < b› by (rule at-within-Icc-at-right)
then have (λu. integral {a..i} f + integral {i..u} f2) differentiable at x within

{x..b}
using that 2 f2 by auto

then have (λu. integral {a..i} f + integral {i..u} f) differentiable at x within
{x..b}

apply (rule differentiable-transform-within[OF - zero-less-one])
using that combine.hyps 2 by (auto intro!: integral-spike[where S={i,x}])

then have (λu. integral {a..u} f) differentiable at x within {x..b}
apply (rule differentiable-transform-within[OF - zero-less-one])
subgoal using that 2 by auto
apply auto
apply (subst Henstock-Kurzweil-Integration.integral-combine)
using that 2 ‹a ≤ i›
apply auto
by (auto intro: integrable-on-subinterval f-int)

then show ?thesis by (simp add: at)
qed

qed
moreover
have (λt. integral {a..t} f) differentiable at-left x if a < x x ≤ b for x
proof −

from that consider x ≤ i |i < x by arith
then show ?thesis
proof cases

case 1

39

have at: at x within {a..x} = at-left x
using ‹a < x› by (rule at-within-Icc-at-left)

then have (λu. integral {a..u} f1) differentiable at x within {a..x}
using that 1 f1 by auto

then have (λu. integral {a..u} f) differentiable at x within {a..x}
apply (rule differentiable-transform-within[OF - zero-less-one])
using that combine.hyps 1 by (auto intro!: integral-spike[where S={i,x}])

then show ?thesis by (simp add: at)
next

case 2
have at: at x within {i..x} = at-left x

using ‹i < x› by (rule at-within-Icc-at-left)
then have (λu. integral {a..i} f + integral {i..u} f2) differentiable at x within

{i..x}
using that 2 f2 by auto

then have (λu. integral {a..i} f + integral {i..u} f) differentiable at x within
{i..x}

apply (rule differentiable-transform-within[OF - zero-less-one])
using that combine.hyps 2 by (auto intro!: integral-spike[where S={i,x}])

then have (λu. integral {a..u} f) differentiable at x within {i..x}
apply (rule differentiable-transform-within[OF - zero-less-one])
subgoal using that 2 by auto
apply auto
apply (subst Henstock-Kurzweil-Integration.integral-combine)
using that 2 ‹a ≤ i›
apply auto
by (auto intro: integrable-on-subinterval f-int)

then show ?thesis by (simp add: at)
qed

qed
ultimately
show ?case

by auto
next

case (weaken a b i I f)
from weaken.IH [OF ‹a < b›]
obtain l u where IH :∧

x. a < x =⇒ x < b =⇒ x /∈ I =⇒ (λu. integral {a..u} f) differentiable (at x)∧
x. a ≤ x =⇒ x < b =⇒ (λt. integral {a..t} f) differentiable (at-right x)∧
x. a < x =⇒ x ≤ b =⇒ (λt. integral {a..t} f) differentiable (at-left x)

by metis
then show ?case by auto

qed

lemma closure (−S) ∩ closure S = frontier S
by (auto simp add: frontier-def closure-complement)

theorem integral-time-domain-has-laplace:
((λt. integral {0 .. t} f) has-laplace L / s) s

40

if pc:
∧

k. piecewise-continuous-on 0 k D f
and eo: exponential-order M c f
and L: (f has-laplace L) s
and s: Re s > c
and c: c > 0
and TODO: D = {} — TODO: generalize to actual piecewise-continuous-on

for f ::real ⇒ complex
proof −

define I where I = (λt. integral {0 .. t} f)
have I ′: (I has-vector-derivative f t) (at t within {0 ..x} − D)

if t ∈ {0 .. x} − D
for x t
unfolding I-def
by (rule integral-has-vector-derivative-piecewise-continuous; fact)

have fi: f integrable-on {0 ..t} for t
by (rule piecewise-continuous-on-integrable) fact

have Ic: continuous-on {0 .. t} I for t
unfolding I-def using fi
by (rule indefinite-integral-continuous-1)

have Ipc: piecewise-continuous-on 0 t {} I for t
by (rule piecewise-continuous-onI) (auto intro!: Ic)

have I : (f has-integral I t) {0 .. t} for t
unfolding I-def
using fi
by (rule integrable-integral)

from exponential-order-integral[OF I eo ‹0 < c›] obtain M ′

where Ieo: exponential-order M ′ c I .
have Ili: laplace-integrand I s integrable-on {0 ..}

using Ipc
apply (rule piecewise-continuous-on-AE-boundedE)
apply (rule laplace-integrand-integrable)
apply (rule Ieo)

apply assumption
apply (rule integrable-continuous-interval)
apply (rule Ic)

apply (rule s)
done

then obtain LI where LI : (I has-laplace LI) s
by (rule laplace-exists-laplace-integrandI)

from piecewise-continuous-onE [OF pc] have ‹finite D› by auto
have I ′2 : (I has-vector-derivative f t) (at t) if t > 0 t /∈ D for t

apply (subst at-within-open[symmetric, where S={0<..<t+1} − D])
subgoal using that by auto
subgoal by (auto intro!:open-Diff finite-imp-closed ‹finite D›)
subgoal using I ′[where x=t + 1]

apply (rule has-vector-derivative-within-subset)
using that
by auto

41

done
have I-tndsto: (I −−−→ 0) (at-right 0)

apply (rule tendsto-eq-rhs)
apply (rule continuous-on-Icc-at-rightD)
apply (rule Ic)

apply (rule zero-less-one)
by (auto simp: I-def)

have (f has-laplace s ∗ LI − 0) s
by (rule has-laplace-derivative-time-domain[OF LI I ′2 I-tndsto Ieo s])
(auto simp: TODO)

from has-laplace-unique[OF this L] have LI = L / s
using s c by auto

with LI show (I has-laplace L / s) s by simp
qed

4.4 higher derivatives
definition nderiv i f X = ((λf . (λx. vector-derivative f (at x within X)))^^i) f

definition ndiff n f X ←→ (∀ i<n. ∀ x ∈ X . nderiv i f X differentiable at x within
X)

lemma nderiv-zero[simp]: nderiv 0 f X = f
by (auto simp: nderiv-def)

lemma nderiv-Suc[simp]:
nderiv (Suc i) f X x = vector-derivative (nderiv i f X) (at x within X)
by (auto simp: nderiv-def)

lemma ndiff-zero[simp]: ndiff 0 f X
by (auto simp: ndiff-def)

lemma ndiff-Sucs[simp]:
ndiff (Suc i) f X ←→
(ndiff i f X) ∧
(∀ x ∈ X . (nderiv i f X) differentiable (at x within X))

apply (auto simp: ndiff-def)
using less-antisym by blast

theorem has-laplace-vector-derivative:
((λt. vector-derivative f (at t)) has-laplace s ∗ L − f0) s
if L: (f has-laplace L) s

and f ′:
∧

t. t > 0 =⇒ f differentiable (at t)
and f0 : (f −−−→ f0) (at-right 0)
and eo: exponential-order M c f
and cs: c < Re s

proof −
have f ′: (

∧
t. 0 < t =⇒ (f has-vector-derivative vector-derivative f (at t)) (at t))

using f ′

42

by (subst vector-derivative-works[symmetric])
show ?thesis

by (rule has-laplace-derivative-time-domain[OF L f ′ f0 eo cs])
qed

lemma has-laplace-nderiv:
(nderiv n f {0<..} has-laplace s^n ∗ L − (

∑
i<n. s^(n − Suc i) ∗ f0 i)) s

if L: (f has-laplace L) s
and f ′: ndiff n f {0<..}
and f0 :

∧
i. i < n =⇒ (nderiv i f {0<..} −−−→ f0 i) (at-right 0)

and eo:
∧

i. i < n =⇒ exponential-order M c (nderiv i f {0<..})
and cs: c < Re s

using f ′ f0 eo
proof (induction n)

case 0
then show ?case

by (auto simp: L)
next

case (Suc n)
have awo: at t within {0<..} = at t if t > 0 for t::real

using that
by (subst at-within-open) auto

have ((λa. vector-derivative (nderiv n f {0<..}) (at a)) has-laplace
s ∗ (s ^ n ∗ L − (

∑
i<n. s^(n − Suc i) ∗ f0 i)) − f0 n) s

(is (- has-laplace ?L) -)
apply (rule has-laplace-vector-derivative)

apply (rule Suc.IH)
subgoal using Suc.prems by auto
subgoal using Suc.prems by auto
subgoal using Suc.prems by auto
subgoal using Suc.prems by (auto simp: awo)
subgoal using Suc.prems by auto
apply (rule Suc.prems; force)

apply (rule cs)
done

also have ?L = s ^ Suc n ∗ L − (
∑

i<Suc n. s ^ (Suc n − Suc i) ∗ f0 i)
by (auto simp: algebra-simps sum-distrib-left diff-Suc Suc-diff-le

split: nat.splits
intro!: sum.cong)

finally show ?case
by (rule has-laplace-spike[where T={0}]) (auto simp: awo)

qed

end

5 Lerch Lemma
theory Lerch-Lemma

imports

43

HOL−Analysis.Analysis
begin

The main tool to prove uniqueness of the Laplace transform.
lemma lerch-lemma-real:

fixes h::real ⇒ real
assumes h-cont[continuous-intros]: continuous-on {0 .. 1} h
assumes int-0 :

∧
n. ((λu. u ^ n ∗ h u) has-integral 0) {0 .. 1}

assumes u: 0 ≤ u u ≤ 1
shows h u = 0

proof −
from Stone-Weierstrass-uniform-limit[OF compact-Icc h-cont]
obtain g where g: uniform-limit {0 ..1} g h sequentially polynomial-function (g

n) for n
by blast

then have rpf-g: real-polynomial-function (g n) for n
by (simp add: real-polynomial-function-eq)

let ?P = λn x. h x ∗ g n x
have continuous-on-g[continuous-intros]: continuous-on s (g n) for s n

by (rule continuous-on-polymonial-function) fact
have P-cont: continuous-on {0 .. 1} (?P n) for n

by (auto intro!: continuous-intros)
have uniform-limit {0 .. 1} (λn x. h x ∗ g n x) (λx. h x ∗ h x) sequentially
by (auto intro!: uniform-limit-intros g assms compact-imp-bounded compact-continuous-image)

from uniform-limit-integral[OF this P-cont]
obtain I J where

I : (
∧

n. (?P n has-integral I n) {0 ..1})
and J : ((λx. h x ∗ h x) has-integral J) {0 ..1}
and IJ : I −−−−→ J
by auto

have (?P n has-integral 0) {0 ..1} for n
proof −

from real-polynomial-function-imp-sum[OF rpf-g]
obtain gn ga where g n = (λx.

∑
i≤gn. ga i ∗ x ^ i) by metis

then have ?P n x = (
∑

i≤gn. x ^ i ∗ h x ∗ ga i) for x
by (auto simp: sum-distrib-left algebra-simps)

moreover have ((λx. . . . x) has-integral 0) {0 .. 1}
by (auto intro!: has-integral-sum[THEN has-integral-eq-rhs] has-integral-mult-left

assms)
ultimately show ?thesis by simp

qed
with I have I n = 0 for n

using has-integral-unique by blast
with IJ J have ((λx. h x ∗ h x) has-integral 0) (cbox 0 1)
by (metis (full-types) LIMSEQ-le-const LIMSEQ-le-const2 box-real(2) dual-order .antisym

order-refl)

44

with - - have h u ∗ h u = 0
by (rule has-integral-0-cbox-imp-0) (auto intro!: continuous-intros u)

then show h u = 0
by simp

qed

lemma lerch-lemma:
fixes h::real ⇒ ′a::euclidean-space
assumes [continuous-intros]: continuous-on {0 .. 1} h
assumes int-0 :

∧
n. ((λu. u ^ n ∗R h u) has-integral 0) {0 .. 1}

assumes u: 0 ≤ u u ≤ 1
shows h u = 0

proof (rule euclidean-eqI)
fix b:: ′a assume b ∈ Basis
have continuous-on {0 .. 1} (λx. h x · b)

by (auto intro!: continuous-intros)
moreover
from ‹b ∈ Basis› have ((λu. u ^ n ∗ (h u · b)) has-integral 0) {0 .. 1} for n

using int-0 [of n] has-integral-componentwise-iff [of λu. u ^ n ∗R h u 0 {0 ..
1}]

by auto
moreover note u
ultimately show h u · b = 0 · b

unfolding inner-zero-left
by (rule lerch-lemma-real)

qed

end

6 Uniqueness of Laplace Transform
theory Uniqueness

imports
Existence
Lerch-Lemma

begin

We show uniqueness of the Laplace transform for continuous functions.
lemma laplace-transform-zero:— should also work for piecewise continuous

assumes cont-f : continuous-on {0 ..} f
assumes eo: exponential-order M a f
assumes laplace:

∧
s. Re s > a =⇒ (f has-laplace 0) s

assumes t ≥ 0
shows f t = 0

proof −
define I where I ≡ λs k. integral {0 ..k} (laplace-integrand f s)
have bounded-image: bounded (f ‘ {0 ..b}) for b

by (auto intro!: compact-imp-bounded compact-continuous-image cont-f intro:
continuous-on-subset)

45

obtain B where B: ∀ x∈{0 ..b}. cmod (f x) ≤ B b for b
apply atomize-elim
apply (rule choice)
using bounded-image[unfolded bounded-iff]
by auto

have fi: f integrable-on {0 ..b} for b
by (auto intro!: integrable-continuous-interval intro: continuous-on-subset cont-f)

have aint: complex-set-integrable lebesgue {0 ..b} (laplace-integrand f s) for b s
by (rule laplace-integrand-absolutely-integrable-on-Icc[OF

AE-BallI [OF bounded-le-Sup[OF bounded-image]] fi])
have int: ((λt. exp (t ∗R − s) ∗ f t) has-integral I s b) {0 .. b} for s b

using aint[of b s]
unfolding laplace-integrand-def [symmetric] I-def absolutely-integrable-on-def
by blast

have I-integral: Re s > a =⇒ (I s −−−→ integral {0 ..} (laplace-integrand f s))
at-top for s

unfolding I-def
by (metis aint eo improper-integral-at-top laplace-integrand-absolutely-integrable-on-Ici-iff)

have imp: (I s −−−→ 0) at-top if s: Re s > a for s
using I-integral[of s] laplace[unfolded has-laplace-def , rule-format, OF s] s
unfolding has-laplace-def I-def laplace-integrand-def
by (simp add: integral-unique)

define s0 where s0 = a + 1
then have s0 > a by auto
have ∀ F x in at-right (0 ::real). 0 < x ∧ x < 1

by (auto intro!: eventually-at-rightI)
moreover
from exponential-orderD(2)[OF eo]
have ∀ F t in at-right 0 . cmod (f (− ln t)) ≤ M ∗ exp (a ∗ (− ln t))

unfolding at-top-mirror filtermap-ln-at-right[symmetric] eventually-filtermap .
ultimately have ∀ F x in at-right 0 . cmod ((x powr s0) ∗ f (− ln x)) ≤ M ∗ x

powr (s0 − a)
(is ∀ F x in -. ?l x ≤ ?r x)

proof eventually-elim
case x: (elim x)
then have cmod ((x powr s0) ∗ f (− ln x)) ≤ x powr s0 ∗ (M ∗ exp (a ∗ (−

ln x)))
by (intro norm-mult-ineq[THEN order-trans]) (auto intro!: x(2)[THEN or-

der-trans])
also have . . . = M ∗ x powr (s0 − a)

by (simp add: exp-minus ln-inverse divide-simps powr-def mult-exp-exp alge-
bra-simps)

finally show ?case .
qed
then have ((λx. x powr s0 ∗ f (− ln x)) −−−→ 0) (at-right 0)

by (rule Lim-null-comparison)
(auto intro!: tendsto-eq-intros ‹a < s0 › eventually-at-rightI zero-less-one)

moreover have ∀ F x in at x. ln x ≤ 0 if 0 < x x < 1 for x::real

46

using order-tendstoD(1)[OF tendsto-ident-at ‹0 < x›, of UNIV]
order-tendstoD(2)[OF tendsto-ident-at ‹x < 1 ›, of UNIV]

by eventually-elim simp
ultimately have [continuous-intros]:

continuous-on {0 ..1} (λx. x powr s0 ∗ f (− ln x))
by (intro continuous-on-IccI ;

force intro!: continuous-on-tendsto-compose[OF cont-f] tendsto-eq-intros
eventually-at-leftI

zero-less-one)
{

fix n::nat
let ?i = (λu. u ^ n ∗R (u powr s0 ∗ f (− ln u)))
let ?I = λn b. integral {exp (− b).. 1} ?i
have ∀ F (b::real) in at-top. b > 0

by (simp add: eventually-gt-at-top)
then have ∀ F b in at-top. I (s0 + Suc n) b = ?I n b
proof eventually-elim

case (elim b)
have eq: exp (t ∗R − complex-of-real (s0 + real (Suc n))) ∗ f t =

complex-of-real (exp (− (real n ∗ t)) ∗ exp (− t) ∗ exp (− (s0 ∗ t))) ∗ f t
for t
by (auto simp: Euler mult-exp-exp algebra-simps simp del: of-real-mult)

from int[of s0 + Suc n b]
have int ′: ((λt. exp (− (n ∗ t)) ∗ exp (−t) ∗ exp (− (s0 ∗ t)) ∗ f t)

has-integral I (s0 + Suc n) b) {0 ..b}
(is (?fe has-integral -) -)
unfolding eq .

have ((λx. − exp (− x) ∗R exp (− x) ^ n ∗R (exp (− x) powr s0 ∗ f (− ln
(exp (− x)))))

has-integral
integral {exp (− 0)..exp (− b)} ?i − integral {exp (− b)..exp (− 0)} ?i)

{0 ..b}
by (rule has-integral-substitution-general[of {} 0 b λt. exp(−t) 0 1 ?i λx.

−exp(−x)])
(auto intro!: less-imp-le[OF ‹b > 0 ›] continuous-intros integrable-continuous-real

derivative-eq-intros)
then have (?fe has-integral ?I n b) {0 ..b}

using ‹b > 0 ›
by (auto simp: algebra-simps mult-exp-exp exp-of-nat-mult[symmetric]

scaleR-conv-of-real
exp-add powr-def of-real-exp has-integral-neg-iff)

with int ′ show ?case
by (rule has-integral-unique)

qed
moreover have (I (s0 + Suc n) −−−→ 0) at-top

by (rule imp) (use ‹s0 > a› in auto)
ultimately have (?I n −−−→ 0) at-top

by (rule Lim-transform-eventually[rotated])
then have 1 : ((λx. integral {exp (ln x)..1} ?i) −−−→ 0) (at-right 0)

47

unfolding at-top-mirror filtermap-ln-at-right[symmetric] filtermap-filtermap
filterlim-filtermap

by simp
have ∀ F x in at-right 0 . x > 0

by (simp add: eventually-at-filter)
then have ∀ F x in at-right 0 . integral {exp (ln x)..1} ?i = integral {x .. 1} ?i

by eventually-elim (auto simp:)
from Lim-transform-eventually[OF 1 this]
have ((λx. integral {x..1} ?i) −−−→ 0) (at-right 0)

by simp
moreover
have ?i integrable-on {0 ..1}

by (force intro: continuous-intros integrable-continuous-real)
from continuous-on-Icc-at-rightD[OF indefinite-integral-continuous-1 ′[OF this]

zero-less-one]
have ((λx. integral {x..1} ?i) −−−→ integral {0 .. 1} ?i) (at-right 0)

by simp
ultimately have integral {0 .. 1} ?i = 0

by (rule tendsto-unique[symmetric, rotated]) simp
then have (?i has-integral 0) {0 .. 1}

using integrable-integral ‹?i integrable-on {0 ..1}›
by (metis (full-types))

} from lerch-lemma[OF - this, of exp (− t)]
show f t = 0 using ‹t ≥ 0 ›

by (auto intro!: continuous-intros)
qed

lemma exponential-order-eventually-eq: exponential-order M a f
if exponential-order M a g

∧
t. t ≥ k =⇒ f t = g t

proof −
have ∀ F t in at-top. f t = g t

using that
unfolding eventually-at-top-linorder
by blast

with exponential-orderD(2)[OF that(1)]
have (∀ F t in at-top. norm (f t) ≤ M ∗ exp (a ∗ t))

by eventually-elim auto
with exponential-orderD(1)[OF that(1)]
show ?thesis

by (rule exponential-orderI)
qed

lemma exponential-order-mono:
assumes eo: exponential-order M a f
assumes a ≤ b M ≤ N
shows exponential-order N b f

proof (rule exponential-orderI)
from exponential-orderD[OF eo] assms(3)
show 0 < N by simp

48

have ∀ F t in at-top. (t::real) > 0
by (simp add: eventually-gt-at-top)

then have ∀ F t in at-top. M ∗ exp (a ∗ t) ≤ N ∗ exp (b ∗ t)
by eventually-elim
(use ‹0 < N › in ‹force intro: mult-mono assms›)

with exponential-orderD(2)[OF eo]
show ∀ F t in at-top. norm (f t) ≤ N ∗ exp (b ∗ t)

by (eventually-elim) simp
qed

lemma exponential-order-uminus-iff :
exponential-order M a (λx. − f x) = exponential-order M a f
by (auto simp: exponential-order-def)

lemma exponential-order-add:
assumes exponential-order M a f exponential-order M a g
shows exponential-order (2 ∗ M) a (λx. f x + g x)
using assms
apply (auto simp: exponential-order-def)
subgoal premises prems

using prems(1 ,3)
apply (eventually-elim)
apply (rule norm-triangle-le)
by linarith

done

theorem laplace-transform-unique:
assumes f :

∧
s. Re s > a =⇒ (f has-laplace F) s

assumes g:
∧

s. Re s > b =⇒ (g has-laplace F) s
assumes [continuous-intros]: continuous-on {0 ..} f
assumes [continuous-intros]: continuous-on {0 ..} g
assumes eof : exponential-order M a f
assumes eog: exponential-order N b g
assumes t ≥ 0
shows f t = g t

proof −
define c where c = max a b
define L where L = max M N
from eof have eof : exponential-order L c f

by (rule exponential-order-mono) (auto simp: L-def c-def)
from eog have eog: exponential-order L c (λx. − g x)

unfolding exponential-order-uminus-iff
by (rule exponential-order-mono) (auto simp: L-def c-def)

from exponential-order-add[OF eof eog]
have eom: exponential-order (2 ∗ L) c (λx. f x − g x)

by simp
have l0 : ((λx. f x − g x) has-laplace 0) s if Re s > c for s

using has-laplace-minus[OF f g, of s] that by (simp add: c-def max-def split:
if-splits)

49

have f t − g t = 0
by (rule laplace-transform-zero[OF - eom l0 ‹t ≥ 0 ›])
(auto intro!: continuous-intros)

then show ?thesis by simp
qed

end
theory Laplace-Transform

imports
Existence
Uniqueness

begin

end

References

[1] A. Rashid and O. Hasan. Formalization of transform methods using
HOLăLight. In H. Geuvers, M. England, O. Hasan, F. Rabe, and
O. Teschke, editors, Intelligent Computer Mathematics, pages 319–332,
Cham, 2017. Springer International Publishing.

[2] A. Rashid and O. Hasan. Formalization of Lerch’s theorem using HOL
Light. FLAP, 5(8):1623–1652, 2018.

[3] J. L. Schiff. The Laplace transform: theory and applications. Springer
New York, 1999.

[4] S. H. Taqdees and O. Hasan. Formalization of Laplace transform us-
ing the multivariable calculus theory of HOL-Light. In K. McMillan,
A. Middeldorp, and A. Voronkov, editors, Logic for Programming, Ar-
tificial Intelligence, and Reasoning, pages 744–758, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

50

	References
	Library Additions
	Derivatives
	Integrals
	Miscellaneous

	Piecewise Continous Functions
	at within filters
	intervals

	Existence
	Definition
	Condition for Existence: Exponential Order
	Concrete Laplace Transforms
	higher derivatives

	Lerch Lemma
	Uniqueness of Laplace Transform

