
Abstract Rewriting

Christian Sternagel and René Thiemann

April 13, 2025

Abstract

We present an Isabelle formalization of abstract rewriting (see, e.g.,
[1]). First, we define standard relations like joinability, meetability,
conversion, etc. Then, we formalize important properties of abstract
rewrite systems, e.g., confluence and strong normalization. Our main
concern is on strong normalization, since this formalization is the basis
of [3] (which is mainly about strong normalization of term rewrite
systems; see also IsaFoR/CeTA’s website1). Hence lemmas involving
strong normalization, constitute by far the biggest part of this theory.
One of those is Newman’s lemma.

Contents
1 Infinite Sequences 2

1.1 Operations on Infinite Sequences 2
1.2 Predicates on Natural Numbers 4
1.3 Assembling Infinite Words from Finite Words 7

2 Abstract Rewrite Systems 13
2.1 Definitions . 13
2.2 Properties of ARSs . 18
2.3 Newman’s Lemma . 37
2.4 Commutation . 43
2.5 Strong Normalization . 47
2.6 Terminating part of a relation 62

3 Relative Rewriting 72

4 Strongly Normalizing Orders 109
1http://cl-informatik.uibk.ac.at/software/ceta

1

http://cl-informatik.uibk.ac.at/software/ceta

5 Carriers of Strongly Normalizing Orders 116
5.1 The standard semiring over the naturals 116
5.2 The standard semiring over the Archimedean fields using delta-

orderings . 117
5.3 The standard semiring over the integers 121
5.4 The arctic semiring over the integers 121
5.5 The arctic semiring over an arbitrary archimedean field . . . 126
A description of this formalization will be available in [2].

1 Infinite Sequences
theory Seq
imports

Main
HOL−Library.Infinite-Set

begin

Infinite sequences are represented by functions of type nat ⇒ ′a.
type-synonym ′a seq = nat ⇒ ′a

1.1 Operations on Infinite Sequences
An infinite sequence is linked by a binary predicate P if every two consecutive
elements satisfy it. Such a sequence is called a P-chain.
abbreviation (input) chainp :: (′a ⇒ ′a ⇒ bool) ⇒ ′a seq ⇒ bool where

chainp P S ≡ ∀ i. P (S i) (S (Suc i))

Special version for relations.
abbreviation (input) chain :: ′a rel ⇒ ′a seq ⇒ bool where

chain r S ≡ chainp (λx y. (x, y) ∈ r) S

Extending a chain at the front.
lemma cons-chainp:

assumes P x (S 0) and chainp P S
shows chainp P (case-nat x S) (is chainp P ?S)

proof
fix i show P (?S i) (?S (Suc i)) using assms by (cases i) simp-all

qed

Special version for relations.
lemma cons-chain:

assumes (x, S 0) ∈ r and chain r S shows chain r (case-nat x S)
using cons-chainp[of λx y. (x, y) ∈ r , OF assms] .

A chain admits arbitrary transitive steps.
lemma chainp-imp-relpowp:

assumes chainp P S shows (P^^j) (S i) (S (i + j))

2

proof (induct i + j arbitrary: j)
case (Suc n) thus ?case using assms by (cases j) auto

qed simp

lemma chain-imp-relpow:
assumes chain r S shows (S i, S (i + j)) ∈ r^^j

proof (induct i + j arbitrary: j)
case (Suc n) thus ?case using assms by (cases j) auto

qed simp

lemma chainp-imp-tranclp:
assumes chainp P S and i < j shows P^++ (S i) (S j)

proof −
from less-imp-Suc-add[OF assms(2)] obtain n where j = i + Suc n by auto
with chainp-imp-relpowp[of P S Suc n i, OF assms(1)]

show ?thesis
unfolding trancl-power [of (S i, S j), to-pred]
by force

qed

lemma chain-imp-trancl:
assumes chain r S and i < j shows (S i, S j) ∈ r^+

proof −
from less-imp-Suc-add[OF assms(2)] obtain n where j = i + Suc n by auto
with chain-imp-relpow[OF assms(1), of i Suc n]

show ?thesis unfolding trancl-power by force
qed

A chain admits arbitrary reflexive and transitive steps.
lemma chainp-imp-rtranclp:

assumes chainp P S and i ≤ j shows P^∗∗ (S i) (S j)
proof −

from assms(2) obtain n where j = i + n by (induct j − i arbitrary: j) force+
with chainp-imp-relpowp[of P S , OF assms(1), of n i] show ?thesis

by (simp add: relpow-imp-rtrancl[of (S i, S (i + n)), to-pred])
qed

lemma chain-imp-rtrancl:
assumes chain r S and i ≤ j shows (S i, S j) ∈ r^∗

proof −
from assms(2) obtain n where j = i + n by (induct j − i arbitrary: j) force+
with chain-imp-relpow[OF assms(1), of i n] show ?thesis by (simp add: relpow-imp-rtrancl)

qed

If for every i there is a later index f i such that the corresponding ele-
ments satisfy the predicate P, then there is a P-chain.
lemma stepfun-imp-chainp ′:

assumes ∀ i≥n::nat. f i ≥ i ∧ P (S i) (S (f i))
shows chainp P (λi. S ((f ^^ i) n)) (is chainp P ?T)

3

proof
fix i
from assms have (f ^^ i) n ≥ n by (induct i) auto
with assms[THEN spec[of - (f ^^ i) n]]

show P (?T i) (?T (Suc i)) by simp
qed

lemma stepfun-imp-chainp:
assumes ∀ i≥n::nat. f i > i ∧ P (S i) (S (f i))
shows chainp P (λi. S ((f ^^ i) n)) (is chainp P ?T)
using stepfun-imp-chainp ′[of n f P S] and assms by force

lemma subchain:
assumes ∀ i::nat>n. ∃ j>i. P (f i) (f j)
shows ∃ϕ. (∀ i j. i < j −→ ϕ i < ϕ j) ∧ (∀ i. P (f (ϕ i)) (f (ϕ (Suc i))))

proof −
from assms have ∀ i∈{i. i > n}. ∃ j>i. P (f i) (f j) by simp
from bchoice [OF this] obtain g

where ∗: ∀ i>n. g i > i
and ∗∗: ∀ i>n. P (f i) (f (g i)) by auto

define ϕ where [simp]: ϕ i = (g ^^ i) (Suc n) for i
from ∗ have ∗∗∗:

∧
i. ϕ i > n by (induct-tac i) auto

then have
∧

i. ϕ i < ϕ (Suc i) using ∗ by (induct-tac i) auto
then have

∧
i j. i < j =⇒ ϕ i < ϕ j by (rule lift-Suc-mono-less)

moreover have
∧

i. P (f (ϕ i)) (f (ϕ (Suc i))) using ∗∗ and ∗∗∗ by simp
ultimately show ?thesis by blast

qed

If for every i there is a later index j such that the corresponding elements
satisfy the predicate P, then there is a P-chain.
lemma steps-imp-chainp ′:

assumes ∀ i≥n::nat. ∃ j≥i. P (S i) (S j) shows ∃T . chainp P T
proof −

from assms have ∀ i∈{i. i ≥ n}. ∃ j≥i. P (S i) (S j) by auto
from bchoice [OF this]

obtain f where ∀ i≥n. f i ≥ i ∧ P (S i) (S (f i)) by auto
from stepfun-imp-chainp ′[of n f P S , OF this] show ?thesis by fast

qed

lemma steps-imp-chainp:
assumes ∀ i≥n::nat. ∃ j>i. P (S i) (S j) shows ∃T . chainp P T
using steps-imp-chainp ′ [of n P S] and assms by force

1.2 Predicates on Natural Numbers
If some property holds for infinitely many natural numbers, obtain an index
function that points to these numbers in increasing order.
locale infinitely-many =

fixes p :: nat ⇒ bool

4

assumes infinite: INFM j. p j
begin

lemma inf : ∃ j≥i. p j using infinite[unfolded INFM-nat-le] by auto

fun index :: nat seq where
index 0 = (LEAST n. p n)
| index (Suc n) = (LEAST k. p k ∧ k > index n)

lemma index-p: p (index n)
proof (induct n)

case 0
from inf obtain j where p j by auto
with LeastI [of p j] show ?case by auto

next
case (Suc n)
from inf obtain k where k ≥ Suc (index n) ∧ p k by auto
with LeastI [of λ k. p k ∧ k > index n k] show ?case by auto

qed

lemma index-ordered: index n < index (Suc n)
proof −

from inf obtain k where k ≥ Suc (index n) ∧ p k by auto
with LeastI [of λ k. p k ∧ k > index n k] show ?thesis by auto

qed

lemma index-not-p-between:
assumes i1 : index n < i

and i2 : i < index (Suc n)
shows ¬ p i

proof −
from not-less-Least[OF i2 [simplified]] i1 show ?thesis by auto

qed

lemma index-ordered-le:
assumes i ≤ j shows index i ≤ index j

proof −
from assms have j = i + (j − i) by auto
then obtain k where j: j = i + k by auto
have index i ≤ index (i + k)
proof (induct k)

case (Suc k)
with index-ordered[of i + k]
show ?case by auto

qed simp
thus ?thesis unfolding j .

qed

lemma index-surj:

5

assumes k ≥ index l
shows ∃ i j. k = index i + j ∧ index i + j < index (Suc i)

proof −
from assms have k = index l + (k − index l) by auto
then obtain u where k: k = index l + u by auto
show ?thesis unfolding k
proof (induct u)

case 0
show ?case

by (intro exI conjI , rule refl, insert index-ordered[of l], simp)
next

case (Suc u)
then obtain i j

where lu: index l + u = index i + j and lt: index i + j < index (Suc i) by
auto

hence index l + u < index (Suc i) by auto
show ?case
proof (cases index l + (Suc u) = index (Suc i))

case False
show ?thesis

by (rule exI [of - i], rule exI [of - Suc j], insert lu lt False, auto)
next

case True
show ?thesis

by (rule exI [of - Suc i], rule exI [of - 0], insert True index-ordered[of Suc i],
auto)

qed
qed

qed

lemma index-ordered-less:
assumes i < j shows index i < index j

proof −
from assms have Suc i ≤ j by auto
from index-ordered-le[OF this]
have index (Suc i) ≤ index j .
with index-ordered[of i] show ?thesis by auto

qed

lemma index-not-p-start: assumes i: i < index 0 shows ¬ p i
proof −

from i[simplified index.simps] have i < Least p .
from not-less-Least[OF this] show ?thesis .

qed

end

6

1.3 Assembling Infinite Words from Finite Words
Concatenate infinitely many non-empty words to an infinite word.
fun inf-concat-simple :: (nat ⇒ nat) ⇒ nat ⇒ (nat × nat) where

inf-concat-simple f 0 = (0 , 0)
| inf-concat-simple f (Suc n) = (

let (i, j) = inf-concat-simple f n in
if Suc j < f i then (i, Suc j)
else (Suc i, 0))

lemma inf-concat-simple-add:
assumes ck: inf-concat-simple f k = (i, j)

and jl: j + l < f i
shows inf-concat-simple f (k + l) = (i,j + l)

using jl
proof (induct l)

case 0
thus ?case using ck by simp

next
case (Suc l)
hence c: inf-concat-simple f (k + l) = (i, j+ l) by auto
show ?case

by (simp add: c, insert Suc(2), auto)
qed

lemma inf-concat-simple-surj-zero: ∃ k. inf-concat-simple f k = (i,0)
proof (induct i)

case 0
show ?case

by (rule exI [of - 0], simp)
next

case (Suc i)
then obtain k where ck: inf-concat-simple f k = (i,0) by auto
show ?case
proof (cases f i)

case 0
show ?thesis

by (rule exI [of - Suc k], simp add: ck 0)
next

case (Suc n)
hence 0 + n < f i by auto
from inf-concat-simple-add[OF ck, OF this] Suc
show ?thesis

by (intro exI [of - k + Suc n], auto)
qed

qed

lemma inf-concat-simple-surj:
assumes j < f i

7

shows ∃ k. inf-concat-simple f k = (i,j)
proof −

from assms have j: 0 + j < f i by auto
from inf-concat-simple-surj-zero obtain k where inf-concat-simple f k = (i,0)

by auto
from inf-concat-simple-add[OF this, OF j] show ?thesis by auto

qed

lemma inf-concat-simple-mono:
assumes k ≤ k ′ shows fst (inf-concat-simple f k) ≤ fst (inf-concat-simple f k ′)

proof −
from assms have k ′ = k + (k ′ − k) by auto
then obtain l where k ′: k ′ = k + l by auto
show ?thesis unfolding k ′

proof (induct l)
case (Suc l)

obtain i j where ckl: inf-concat-simple f (k+l) = (i,j) by (cases inf-concat-simple
f (k+l), auto)

with Suc have fst (inf-concat-simple f k) ≤ i by auto
also have ... ≤ fst (inf-concat-simple f (k + Suc l))

by (simp add: ckl)
finally show ?case .

qed simp
qed

fun inf-concat :: (nat ⇒ nat) ⇒ nat ⇒ nat × nat where
inf-concat n 0 = (LEAST j. n j > 0 , 0)
| inf-concat n (Suc k) = (let (i, j) = inf-concat n k in (if Suc j < n i then (i, Suc
j) else (LEAST i ′. i ′ > i ∧ n i ′ > 0 , 0)))

lemma inf-concat-bounds:
assumes inf : INFM i. n i > 0

and res: inf-concat n k = (i,j)
shows j < n i

proof (cases k)
case 0
with res have i: i = (LEAST i. n i > 0) and j: j = 0 by auto
from inf [unfolded INFM-nat-le] obtain i ′ where i ′: 0 < n i ′ by auto
have 0 < n (LEAST i. n i > 0)

by (rule LeastI , rule i ′)
with i j show ?thesis by auto

next
case (Suc k ′)
obtain i ′ j ′ where res ′: inf-concat n k ′ = (i ′,j ′) by force
note res = res[unfolded Suc inf-concat.simps res ′ Let-def split]
show ?thesis
proof (cases Suc j ′ < n i ′)

8

case True
with res show ?thesis by auto

next
case False
with res have i: i = (LEAST f . i ′ < f ∧ 0 < n f) and j: j = 0 by auto
from inf [unfolded INFM-nat] obtain f where f : i ′ < f ∧ 0 < n f by auto
have 0 < n (LEAST f . i ′ < f ∧ 0 < n f)

using LeastI [of λ f . i ′ < f ∧ 0 < n f , OF f]
by auto

with i j show ?thesis by auto
qed

qed

lemma inf-concat-add:
assumes res: inf-concat n k = (i,j)

and j: j + m < n i
shows inf-concat n (k + m) = (i,j+m)
using j

proof (induct m)
case 0 show ?case using res by auto

next
case (Suc m)
hence inf-concat n (k + m) = (i, j+m) by auto
with Suc(2)
show ?case by auto

qed

lemma inf-concat-step:
assumes res: inf-concat n k = (i,j)

and j: Suc (j + m) = n i
shows inf-concat n (k + Suc m) = (LEAST i ′. i ′ > i ∧ 0 < n i ′, 0)

proof −
from j have j + m < n i by auto
note res = inf-concat-add[OF res, OF this]
show ?thesis by (simp add: res j)

qed

lemma inf-concat-surj-zero:
assumes 0 < n i
shows ∃ k. inf-concat n k = (i, 0)

proof −
{

fix l
have ∀ j. j < l ∧ 0 < n j −→ (∃ k. inf-concat n k = (j,0))
proof (induct l)

case 0
thus ?case by auto

next
case (Suc l)

9

show ?case
proof (intro allI impI , elim conjE)

fix j
assume j: j < Suc l and nj: 0 < n j
show ∃ k. inf-concat n k = (j, 0)
proof (cases j < l)

case True
from Suc[THEN spec[of - j]] True nj show ?thesis by auto

next
case False
with j have j: j = l by auto
show ?thesis
proof (cases ∃ j ′. j ′ < l ∧ 0 < n j ′)

case False
have l: (LEAST i. 0 < n i) = l
proof (rule Least-equality, rule nj[unfolded j])

fix l ′
assume 0 < n l ′
with False have ¬ l ′ < l by auto
thus l ≤ l ′ by auto

qed
show ?thesis

by (rule exI [of - 0], simp add: l j)
next

case True
then obtain ll l where ll l: ll l < l and nlll: 0 < n lll by auto
then obtain ll where l: l = Suc ll by (cases l, auto)
from ll l l have ll l: ll l = ll − (ll − ll l) by auto
let ?l ′ = LEAST d. 0 < n (ll − d)
have nl ′: 0 < n (ll − ?l ′)
proof (rule LeastI)

show 0 < n (ll − (ll − ll l)) using ll l nlll by auto
qed
with Suc[THEN spec[of - ll − ?l ′]] obtain k where k:

inf-concat n k = (ll − ?l ′,0) unfolding l by auto
from nl ′ obtain off where off : Suc (0 + off) = n (ll − ?l ′) by (cases

n (ll − ?l ′), auto)
from inf-concat-step[OF k, OF off]
have id: inf-concat n (k + Suc off) = (LEAST i ′. ll − ?l ′ < i ′ ∧ 0 < n

i ′,0) (is - = (?l,0)) .
have ll: ?l = l unfolding l
proof (rule Least-equality)
show ll − ?l ′ < Suc ll ∧ 0 < n (Suc ll) using nj[unfolded j l] by simp

next
fix l ′
assume ass: ll − ?l ′ < l ′ ∧ 0 < n l ′
show Suc ll ≤ l ′
proof (rule ccontr)

assume not: ¬ ?thesis

10

hence l ′ ≤ ll by auto
hence ll = l ′ + (ll − l ′) by auto
then obtain k where ll: ll = l ′ + k by auto
from ass have l ′ + k − ?l ′ < l ′ unfolding ll by auto
hence kl ′: k < ?l ′ by auto
have 0 < n (ll − k) using ass unfolding ll by simp
from Least-le[of λ k. 0 < n (ll − k), OF this] kl ′
show False by auto

qed
qed
show ?thesis unfolding j

by (rule exI [of - k + Suc off], unfold id ll, simp)
qed

qed
qed

qed
}
with assms show ?thesis by auto

qed

lemma inf-concat-surj:
assumes j: j < n i
shows ∃ k. inf-concat n k = (i, j)

proof −
from j have 0 < n i by auto
from inf-concat-surj-zero[of n, OF this]
obtain k where inf-concat n k = (i,0) by auto
from inf-concat-add[OF this, of j] j
show ?thesis by auto

qed

lemma inf-concat-mono:
assumes inf : INFM i. n i > 0

and resk: inf-concat n k = (i, j)
and reskp: inf-concat n k ′ = (i ′, j ′)
and lt: i < i ′

shows k < k ′

proof −
note bounds = inf-concat-bounds[OF inf]
{

assume k ′ ≤ k
hence k = k ′ + (k − k ′) by auto
then obtain l where k: k = k ′ + l by auto
have i ′ ≤ fst (inf-concat n (k ′ + l))
proof (induct l)

case 0
with reskp show ?case by auto

next
case (Suc l)

11

obtain i ′′ j ′′ where l: inf-concat n (k ′ + l) = (i ′′,j ′′) by force
with Suc have one: i ′ ≤ i ′′ by auto
from bounds[OF l] have j ′′: j ′′ < n i ′′ by auto
show ?case
proof (cases Suc j ′′ < n i ′′)

case True
show ?thesis by (simp add: l True one)

next
case False
let ?i = LEAST i ′. i ′′ < i ′ ∧ 0 < n i ′
from inf [unfolded INFM-nat] obtain k where i ′′ < k ∧ 0 < n k by auto
from LeastI [of λ k. i ′′ < k ∧ 0 < n k, OF this]
have i ′′ < ?i by auto
with one show ?thesis by (simp add: l False)

qed
qed
with resk k lt have False by auto

}
thus ?thesis by arith

qed

lemma inf-concat-Suc:
assumes inf : INFM i. n i > 0

and f :
∧

i. f i (n i) = f (Suc i) 0
and resk: inf-concat n k = (i, j)
and ressk: inf-concat n (Suc k) = (i ′, j ′)

shows f i ′ j ′ = f i (Suc j)
proof −

note bounds = inf-concat-bounds[OF inf]
from bounds[OF resk] have j: j < n i .
show ?thesis
proof (cases Suc j < n i)

case True
with ressk resk
show ?thesis by simp

next
case False
let ?p = λ i ′. i < i ′ ∧ 0 < n i ′
let ?i ′ = LEAST i ′. ?p i ′
from False j have id: Suc (j + 0) = n i by auto
from inf-concat-step[OF resk, OF id] ressk
have i ′: i ′ = ?i ′ and j ′: j ′ = 0 by auto
from id have j: Suc j = n i by simp
from inf [unfolded INFM-nat] obtain k where ?p k by auto
from LeastI [of ?p, OF this] have ?p ?i ′ .
hence ?i ′ = Suc i + (?i ′ − Suc i) by simp
then obtain d where ii ′: ?i ′ = Suc i + d by auto
from not-less-Least[of - ?p, unfolded ii ′] have d ′:

∧
d ′. d ′ < d =⇒ n (Suc i +

d ′) = 0 by auto

12

have f (Suc i) 0 = f ?i ′ 0 unfolding ii ′ using d ′

proof (induct d)
case 0
show ?case by simp

next
case (Suc d)
hence f (Suc i) 0 = f (Suc i + d) 0 by auto
also have ... = f (Suc (Suc i + d)) 0

unfolding f [symmetric]
using Suc(2)[of d] by simp

finally show ?case by simp
qed
thus ?thesis unfolding i ′ j ′ j f by simp

qed
qed

end

2 Abstract Rewrite Systems
theory Abstract-Rewriting
imports

HOL−Library.Infinite-Set
Regular−Sets.Regexp-Method
Seq

begin

lemma trancl-mono-set:
r ⊆ s =⇒ r+ ⊆ s+
by (blast intro: trancl-mono)

lemma relpow-mono:
fixes r :: ′a rel
assumes r ⊆ r ′ shows r ^^ n ⊆ r ′ ^^ n
using assms by (induct n) auto

lemma refl-inv-image:
refl R =⇒ refl (inv-image R f)
by (simp add: inv-image-def refl-on-def)

2.1 Definitions
Two elements are joinable (and then have in the joinability relation) w.r.t.
A, iff they have a common reduct.
definition join :: ′a rel ⇒ ′a rel (‹(-↓)› [1000] 999) where

A↓ = A∗ O (A−1)∗

Two elements are meetable (and then have in the meetability relation)

13

w.r.t. A, iff they have a common ancestor.
definition meet :: ′a rel ⇒ ′a rel (‹(-↑)› [1000] 999) where

A↑ = (A−1)∗ O A∗

The symmetric closure of a relation allows steps in both directions.
abbreviation symcl :: ′a rel ⇒ ′a rel (‹(-↔)› [1000] 999) where

A↔ ≡ A ∪ A−1

A conversion is a (possibly empty) sequence of steps in the symmetric
closure.
definition conversion :: ′a rel ⇒ ′a rel (‹(-↔∗)› [1000] 999) where

A↔∗ = (A↔)∗

The set of normal forms of an ARS constitutes all the elements that do
not have any successors.
definition NF :: ′a rel ⇒ ′a set where

NF A = {a. A ‘‘ {a} = {}}

definition normalizability :: ′a rel ⇒ ′a rel (‹(-!)› [1000] 999) where
A! = {(a, b). (a, b) ∈ A∗ ∧ b ∈ NF A}

notation (ASCII)
symcl (‹(-^<−>)› [1000] 999) and
conversion (‹(-^<−>∗)› [1000] 999) and
normalizability (‹(-^!)› [1000] 999)

lemma symcl-converse:
(A↔)−1 = A↔ by auto

lemma symcl-Un: (A ∪ B)↔ = A↔ ∪ B↔ by auto

lemma no-step:
assumes A ‘‘ {a} = {} shows a ∈ NF A
using assms by (auto simp: NF-def)

lemma joinI :
(a, c) ∈ A∗ =⇒ (b, c) ∈ A∗ =⇒ (a, b) ∈ A↓

by (auto simp: join-def rtrancl-converse)

lemma joinI-left:
(a, b) ∈ A∗ =⇒ (a, b) ∈ A↓

by (auto simp: join-def)

lemma joinI-right: (b, a) ∈ A∗ =⇒ (a, b) ∈ A↓

by (rule joinI) auto

lemma joinE :
assumes (a, b) ∈ A↓

obtains c where (a, c) ∈ A∗ and (b, c) ∈ A∗

14

using assms by (auto simp: join-def rtrancl-converse)

lemma joinD:
(a, b) ∈ A↓ =⇒ ∃ c. (a, c) ∈ A∗ ∧ (b, c) ∈ A∗

by (blast elim: joinE)

lemma meetI :
(a, b) ∈ A∗ =⇒ (a, c) ∈ A∗ =⇒ (b, c) ∈ A↑

by (auto simp: meet-def rtrancl-converse)

lemma meetE :
assumes (b, c) ∈ A↑

obtains a where (a, b) ∈ A∗ and (a, c) ∈ A∗

using assms by (auto simp: meet-def rtrancl-converse)

lemma meetD: (b, c) ∈ A↑ =⇒ ∃ a. (a, b) ∈ A∗ ∧ (a, c) ∈ A∗

by (blast elim: meetE)

lemma conversionI : (a, b) ∈ (A↔)∗ =⇒ (a, b) ∈ A↔∗

by (simp add: conversion-def)

lemma conversion-refl [simp]: (a, a) ∈ A↔∗

by (simp add: conversion-def)

lemma conversionI ′:
assumes (a, b) ∈ A∗ shows (a, b) ∈ A↔∗

using assms
proof (induct)

case base then show ?case by simp
next

case (step b c)
then have (b, c) ∈ A↔ by simp
with ‹(a, b) ∈ A↔∗› show ?case unfolding conversion-def by (rule rtrancl.intros)

qed

lemma rtrancl-comp-trancl-conv:
r∗ O r = r+ by regexp

lemma trancl-o-refl-is-trancl:
r+ O r= = r+ by regexp

lemma conversionE :
(a, b) ∈ A↔∗ =⇒ ((a, b) ∈ (A↔)∗ =⇒ P) =⇒ P
by (simp add: conversion-def)

Later declarations are tried first for ‘proof’ and ‘rule,’ then have the
“main” introduction / elimination rules for constants should be declared
last.
declare joinI-left [intro]

15

declare joinI-right [intro]
declare joinI [intro]
declare joinD [dest]
declare joinE [elim]

declare meetI [intro]
declare meetD [dest]
declare meetE [elim]

declare conversionI ′ [intro]
declare conversionI [intro]
declare conversionE [elim]

lemma conversion-trans:
trans (A↔∗)
unfolding trans-def

proof (intro allI impI)
fix a b c assume (a, b) ∈ A↔∗ and (b, c) ∈ A↔∗

then show (a, c) ∈ A↔∗ unfolding conversion-def
proof (induct)

case base then show ?case by simp
next

case (step b c ′)
from ‹(b, c ′) ∈ A↔› and ‹(c ′, c) ∈ (A↔)∗›

have (b, c) ∈ (A↔)∗ by (rule converse-rtrancl-into-rtrancl)
with step show ?case by simp

qed
qed

lemma conversion-sym:
sym (A↔∗)
unfolding sym-def

proof (intro allI impI)
fix a b assume (a, b) ∈ A↔∗ then show (b, a) ∈ A↔∗ unfolding conversion-def
proof (induct)

case base then show ?case by simp
next

case (step b c)
then have (c, b) ∈ A↔ by blast
from ‹(c, b) ∈ A↔› and ‹(b, a) ∈ (A↔)∗›

show ?case by (rule converse-rtrancl-into-rtrancl)
qed

qed

lemma conversion-inv:
(x, y) ∈ R↔∗ ←→ (y, x) ∈ R↔∗

by (auto simp: conversion-def)
(metis (full-types) rtrancl-converseD symcl-converse)+

16

lemma conversion-converse [simp]:
(A↔∗)−1 = A↔∗

by (metis conversion-sym sym-conv-converse-eq)

lemma conversion-rtrancl [simp]:
(A↔∗)∗ = A↔∗

by (metis conversion-def rtrancl-idemp)

lemma rtrancl-join-join:
assumes (a, b) ∈ A∗ and (b, c) ∈ A↓ shows (a, c) ∈ A↓

proof −
from ‹(b, c) ∈ A↓› obtain b ′ where (b, b ′) ∈ A∗ and (b ′, c) ∈ (A−1)∗

unfolding join-def by blast
with ‹(a, b) ∈ A∗› have (a, b ′) ∈ A∗ by simp
with ‹(b ′, c) ∈ (A−1)∗› show ?thesis unfolding join-def by blast

qed

lemma join-rtrancl-join:
assumes (a, b) ∈ A↓ and (c, b) ∈ A∗ shows (a, c) ∈ A↓

proof −
from ‹(c, b) ∈ A∗› have (b, c) ∈ (A−1)∗ unfolding rtrancl-converse by simp
from ‹(a, b) ∈ A↓› obtain a ′ where (a, a ′) ∈ A∗ and (a ′, b) ∈ (A−1)∗

unfolding join-def by best
with ‹(b, c) ∈ (A−1)∗› have (a ′, c) ∈ (A−1)∗ by simp
with ‹(a, a ′) ∈ A∗› show ?thesis unfolding join-def by blast

qed

lemma NF-I : (
∧

b. (a, b) /∈ A) =⇒ a ∈ NF A by (auto intro: no-step)

lemma NF-E : a ∈ NF A =⇒ ((a, b) /∈ A =⇒ P) =⇒ P by (auto simp: NF-def)

declare NF-I [intro]
declare NF-E [elim]

lemma NF-no-step: a ∈ NF A =⇒ ∀ b. (a, b) /∈ A by auto

lemma NF-anti-mono:
assumes A ⊆ B shows NF B ⊆ NF A
using assms by auto

lemma NF-iff-no-step: a ∈ NF A = (∀ b. (a, b) /∈ A) by auto

lemma NF-no-trancl-step:
assumes a ∈ NF A shows ∀ b. (a, b) /∈ A+

proof −
from assms have ∀ b. (a, b) /∈ A by auto
show ?thesis
proof (intro allI notI)

17

fix b assume (a, b) ∈ A+

then show False by (induct) (auto simp: ‹∀ b. (a, b) /∈ A›)
qed

qed

lemma NF-Id-on-fst-image [simp]: NF (Id-on (fst ‘ A)) = NF A by force

lemma fst-image-NF-Id-on [simp]: fst ‘ R = Q =⇒ NF (Id-on Q) = NF R by
force

lemma NF-empty [simp]: NF {} = UNIV by auto

lemma normalizability-I : (a, b) ∈ A∗ =⇒ b ∈ NF A =⇒ (a, b) ∈ A!

by (simp add: normalizability-def)

lemma normalizability-I ′: (a, b) ∈ A∗ =⇒ (b, c) ∈ A! =⇒ (a, c) ∈ A!

by (auto simp add: normalizability-def)

lemma normalizability-E : (a, b) ∈ A! =⇒ ((a, b) ∈ A∗ =⇒ b ∈ NF A =⇒ P) =⇒
P
by (simp add: normalizability-def)

declare normalizability-I ′ [intro]
declare normalizability-I [intro]
declare normalizability-E [elim]

2.2 Properties of ARSs
The following properties on (elements of) ARSs are defined: completeness,
Church-Rosser property, semi-completeness, strong normalization, unique
normal forms, Weak Church-Rosser property, and weak normalization.
definition CR-on :: ′a rel ⇒ ′a set ⇒ bool where

CR-on r A ←→ (∀ a∈A. ∀ b c. (a, b) ∈ r∗ ∧ (a, c) ∈ r∗ −→ (b, c) ∈ join r)

abbreviation CR :: ′a rel ⇒ bool where
CR r ≡ CR-on r UNIV

definition SN-on :: ′a rel ⇒ ′a set ⇒ bool where
SN-on r A ←→ ¬ (∃ f . f 0 ∈ A ∧ chain r f)

abbreviation SN :: ′a rel ⇒ bool where
SN r ≡ SN-on r UNIV

Alternative definition of SN.
lemma SN-def : SN r = (∀ x. SN-on r {x})

unfolding SN-on-def by blast

definition UNF-on :: ′a rel ⇒ ′a set ⇒ bool where
UNF-on r A ←→ (∀ a∈A. ∀ b c. (a, b) ∈ r ! ∧ (a, c) ∈ r ! −→ b = c)

18

abbreviation UNF :: ′a rel ⇒ bool where UNF r ≡ UNF-on r UNIV

definition WCR-on :: ′a rel ⇒ ′a set ⇒ bool where
WCR-on r A ←→ (∀ a∈A. ∀ b c. (a, b) ∈ r ∧ (a, c) ∈ r −→ (b, c) ∈ join r)

abbreviation WCR :: ′a rel ⇒ bool where WCR r ≡ WCR-on r UNIV

definition WN-on :: ′a rel ⇒ ′a set ⇒ bool where
WN-on r A ←→ (∀ a∈A. ∃ b. (a, b) ∈ r !)

abbreviation WN :: ′a rel ⇒ bool where
WN r ≡ WN-on r UNIV

lemmas CR-defs = CR-on-def
lemmas SN-defs = SN-on-def
lemmas UNF-defs = UNF-on-def
lemmas WCR-defs = WCR-on-def
lemmas WN-defs = WN-on-def

definition complete-on :: ′a rel ⇒ ′a set ⇒ bool where
complete-on r A ←→ SN-on r A ∧ CR-on r A

abbreviation complete :: ′a rel ⇒ bool where
complete r ≡ complete-on r UNIV

definition semi-complete-on :: ′a rel ⇒ ′a set ⇒ bool where
semi-complete-on r A ←→ WN-on r A ∧ CR-on r A

abbreviation semi-complete :: ′a rel ⇒ bool where
semi-complete r ≡ semi-complete-on r UNIV

lemmas complete-defs = complete-on-def
lemmas semi-complete-defs = semi-complete-on-def

Unique normal forms with respect to conversion.
definition UNC :: ′a rel ⇒ bool where

UNC A ←→ (∀ a b. a ∈ NF A ∧ b ∈ NF A ∧ (a, b) ∈ A↔∗ −→ a = b)

lemma complete-onI :
SN-on r A =⇒ CR-on r A =⇒ complete-on r A
by (simp add: complete-defs)

lemma complete-onE :
complete-on r A =⇒ (SN-on r A =⇒ CR-on r A =⇒ P) =⇒ P
by (simp add: complete-defs)

lemma CR-onI :
(
∧

a b c. a ∈ A =⇒ (a, b) ∈ r∗ =⇒ (a, c) ∈ r∗ =⇒ (b, c) ∈ join r) =⇒ CR-on

19

r A
by (simp add: CR-defs)

lemma CR-on-singletonI :
(
∧

b c. (a, b) ∈ r∗ =⇒ (a, c) ∈ r∗ =⇒ (b, c) ∈ join r) =⇒ CR-on r {a}
by (simp add: CR-defs)

lemma CR-onE :
CR-on r A =⇒ a ∈ A =⇒ ((b, c) ∈ join r =⇒ P) =⇒ ((a, b) /∈ r∗ =⇒ P) =⇒

((a, c) /∈ r∗ =⇒ P) =⇒ P
unfolding CR-defs by blast

lemma CR-onD:
CR-on r A =⇒ a ∈ A =⇒ (a, b) ∈ r∗ =⇒ (a, c) ∈ r∗ =⇒ (b, c) ∈ join r
by (blast elim: CR-onE)

lemma semi-complete-onI : WN-on r A =⇒ CR-on r A =⇒ semi-complete-on r A
by (simp add: semi-complete-defs)

lemma semi-complete-onE :
semi-complete-on r A =⇒ (WN-on r A =⇒ CR-on r A =⇒ P) =⇒ P
by (simp add: semi-complete-defs)

declare semi-complete-onI [intro]
declare semi-complete-onE [elim]

declare complete-onI [intro]
declare complete-onE [elim]

declare CR-onI [intro]
declare CR-on-singletonI [intro]

declare CR-onD [dest]
declare CR-onE [elim]

lemma UNC-I :
(
∧

a b. a ∈ NF A =⇒ b ∈ NF A =⇒ (a, b) ∈ A↔∗ =⇒ a = b) =⇒ UNC A
by (simp add: UNC-def)

lemma UNC-E :
[[UNC A; a = b =⇒ P; a /∈ NF A =⇒ P; b /∈ NF A =⇒ P; (a, b) /∈ A↔∗ =⇒

P]] =⇒ P
unfolding UNC-def by blast

lemma UNF-onI : (
∧

a b c. a ∈ A =⇒ (a, b) ∈ r ! =⇒ (a, c) ∈ r ! =⇒ b = c) =⇒
UNF-on r A

by (simp add: UNF-defs)

lemma UNF-onE :

20

UNF-on r A =⇒ a ∈ A =⇒ (b = c =⇒ P) =⇒ ((a, b) /∈ r ! =⇒ P) =⇒ ((a, c)
/∈ r ! =⇒ P) =⇒ P

unfolding UNF-on-def by blast

lemma UNF-onD:
UNF-on r A =⇒ a ∈ A =⇒ (a, b) ∈ r ! =⇒ (a, c) ∈ r ! =⇒ b = c
by (blast elim: UNF-onE)

declare UNF-onI [intro]
declare UNF-onD [dest]
declare UNF-onE [elim]

lemma SN-onI :
assumes

∧
f . [[f 0 ∈ A; chain r f]] =⇒ False

shows SN-on r A
using assms unfolding SN-defs by blast

lemma SN-I : (
∧

a. SN-on A {a}) =⇒ SN A
unfolding SN-on-def by blast

lemma SN-on-trancl-imp-SN-on:
assumes SN-on (R+) T shows SN-on R T

proof (rule ccontr)
assume ¬ SN-on R T
then obtain s where s 0 ∈ T and chain R s unfolding SN-defs by auto
then have chain (R+) s by auto
with ‹s 0 ∈ T › have ¬ SN-on (R+) T unfolding SN-defs by auto
with assms show False by simp

qed

lemma SN-onE :
assumes SN-on r A

and ¬ (∃ f . f 0 ∈ A ∧ chain r f) =⇒ P
shows P
using assms unfolding SN-defs by simp

lemma not-SN-onE :
assumes ¬ SN-on r A

and
∧

f . [[f 0 ∈ A; chain r f]] =⇒ P
shows P
using assms unfolding SN-defs by blast

declare SN-onI [intro]
declare SN-onE [elim]
declare not-SN-onE [Pure.elim, elim]

lemma refl-not-SN : (x, x) ∈ R =⇒ ¬ SN R
unfolding SN-defs by force

21

lemma SN-on-irrefl:
assumes SN-on r A
shows ∀ a∈A. (a, a) /∈ r

proof (intro ballI notI)
fix a assume a ∈ A and (a, a) ∈ r
with assms show False unfolding SN-defs by auto

qed

lemma WCR-onI : (
∧

a b c. a ∈ A =⇒ (a, b) ∈ r =⇒ (a, c) ∈ r =⇒ (b, c) ∈ join
r) =⇒ WCR-on r A

by (simp add: WCR-defs)

lemma WCR-onE :
WCR-on r A =⇒ a ∈ A =⇒ ((b, c) ∈ join r =⇒ P) =⇒ ((a, b) /∈ r =⇒ P) =⇒

((a, c) /∈ r =⇒ P) =⇒ P
unfolding WCR-on-def by blast

lemma SN-nat-bounded: SN {(x, y :: nat). x < y ∧ y ≤ b} (is SN ?R)
proof

fix f
assume chain ?R f
then have steps:

∧
i. (f i, f (Suc i)) ∈ ?R ..

{
fix i
have inc: f 0 + i ≤ f i
proof (induct i)

case 0 then show ?case by auto
next

case (Suc i)
have f 0 + Suc i ≤ f i + Suc 0 using Suc by simp
also have ... ≤ f (Suc i) using steps [of i]

by auto
finally show ?case by simp

qed
}
from this [of Suc b] steps [of b]
show False by simp

qed

lemma WCR-onD:
WCR-on r A =⇒ a ∈ A =⇒ (a, b) ∈ r =⇒ (a, c) ∈ r =⇒ (b, c) ∈ join r
by (blast elim: WCR-onE)

lemma WN-onI : (
∧

a. a ∈ A =⇒ ∃ b. (a, b) ∈ r !) =⇒ WN-on r A
by (auto simp: WN-defs)

lemma WN-onE : WN-on r A =⇒ a ∈ A =⇒ (
∧

b. (a, b) ∈ r ! =⇒ P) =⇒ P
unfolding WN-defs by blast

22

lemma WN-onD: WN-on r A =⇒ a ∈ A =⇒ ∃ b. (a, b) ∈ r !

by (blast elim: WN-onE)

declare WCR-onI [intro]
declare WCR-onD [dest]
declare WCR-onE [elim]

declare WN-onI [intro]
declare WN-onD [dest]
declare WN-onE [elim]

Restricting a relation r to those elements that are strongly normalizing
with respect to a relation s.
definition restrict-SN :: ′a rel ⇒ ′a rel ⇒ ′a rel where

restrict-SN r s = {(a, b) | a b. (a, b) ∈ r ∧ SN-on s {a}}

lemma SN-restrict-SN-idemp [simp]: SN (restrict-SN A A)
by (auto simp: restrict-SN-def SN-defs)

lemma SN-on-Image:
assumes SN-on r A
shows SN-on r (r ‘‘ A)

proof
fix f
assume f 0 ∈ r ‘‘ A and chain: chain r f
then obtain a where a ∈ A and 1 : (a, f 0) ∈ r by auto
let ?g = case-nat a f
from cons-chain [OF 1 chain] have chain r ?g .
moreover have ?g 0 ∈ A by (simp add: ‹a ∈ A›)
ultimately have ¬ SN-on r A unfolding SN-defs by best
with assms show False by simp

qed

lemma SN-on-subset2 :
assumes A ⊆ B and SN-on r B
shows SN-on r A
using assms unfolding SN-on-def by blast

lemma step-preserves-SN-on:
assumes 1 : (a, b) ∈ r

and 2 : SN-on r {a}
shows SN-on r {b}
using 1 and SN-on-Image [OF 2] and SN-on-subset2 [of {b} r ‘‘ {a}] by auto

lemma steps-preserve-SN-on: (a, b) ∈ A∗ =⇒ SN-on A {a} =⇒ SN-on A {b}
by (induct rule: rtrancl.induct) (auto simp: step-preserves-SN-on)

lemma relpow-seq:

23

assumes (x, y) ∈ r^^n
shows ∃ f . f 0 = x ∧ f n = y ∧ (∀ i<n. (f i, f (Suc i)) ∈ r)

using assms
proof (induct n arbitrary: y)

case 0 then show ?case by auto
next

case (Suc n)
then obtain z where (x, z) ∈ r^^n and (z, y) ∈ r by auto
from Suc(1)[OF ‹(x, z) ∈ r^^n›]

obtain f where f 0 = x and f n = z and seq: ∀ i<n. (f i, f (Suc i)) ∈ r by
auto

let ?n = Suc n
let ?f = λi. if i = ?n then y else f i
have ?f ?n = y by simp
from ‹f 0 = x› have ?f 0 = x by simp
from seq have seq ′: ∀ i<n. (?f i, ?f (Suc i)) ∈ r by auto
with ‹f n = z› and ‹(z, y) ∈ r› have ∀ i<?n. (?f i, ?f (Suc i)) ∈ r by auto
with ‹?f 0 = x› and ‹?f ?n = y› show ?case by best

qed

lemma rtrancl-imp-seq:
assumes (x, y) ∈ r∗

shows ∃ f n. f 0 = x ∧ f n = y ∧ (∀ i<n. (f i, f (Suc i)) ∈ r)
using assms [unfolded rtrancl-power] and relpow-seq [of x y - r] by blast

lemma SN-on-Image-rtrancl:
assumes SN-on r A
shows SN-on r (r∗ ‘‘ A)

proof
fix f
assume f0 : f 0 ∈ r∗ ‘‘ A and chain: chain r f
then obtain a where a: a ∈ A and (a, f 0) ∈ r∗ by auto
then obtain n where (a, f 0) ∈ r^^n unfolding rtrancl-power by auto
show False
proof (cases n)

case 0
with ‹(a, f 0) ∈ r^^n› have f 0 = a by simp
then have f 0 ∈ A by (simp add: a)
with chain have ¬ SN-on r A by auto
with assms show False by simp

next
case (Suc m)
from relpow-seq [OF ‹(a, f 0) ∈ r^^n›]

obtain g where g0 : g 0 = a and g n = f 0
and gseq: ∀ i<n. (g i, g (Suc i)) ∈ r by auto

let ?f = λi. if i < n then g i else f (i − n)
have chain r ?f
proof

fix i

24

{
assume Suc i < n
then have (?f i, ?f (Suc i)) ∈ r by (simp add: gseq)

}
moreover
{

assume Suc i > n
then have eq: Suc (i − n) = Suc i − n by arith
from chain have (f (i − n), f (Suc (i − n))) ∈ r by simp
then have (f (i − n), f (Suc i − n)) ∈ r by (simp add: eq)
with ‹Suc i > n› have (?f i, ?f (Suc i)) ∈ r by simp

}
moreover
{

assume Suc i = n
then have eq: f (Suc i − n) = g n by (simp add: ‹g n = f 0 ›)
from ‹Suc i = n› have eq ′: i = n − 1 by arith
from gseq have (g i, f (Suc i − n)) ∈ r unfolding eq by (simp add: Suc

eq ′)
then have (?f i, ?f (Suc i)) ∈ r using ‹Suc i = n› by simp

}
ultimately show (?f i, ?f (Suc i)) ∈ r by simp

qed
moreover have ?f 0 ∈ A
proof (cases n)

case 0
with ‹(a, f 0) ∈ r^^n› have eq: a = f 0 by simp
from a show ?thesis by (simp add: eq 0)

next
case (Suc m)
then show ?thesis by (simp add: a g0)

qed
ultimately have ¬ SN-on r A unfolding SN-defs by best
with assms show False by simp

qed
qed

declare subrelI [Pure.intro]

lemma restrict-SN-trancl-simp [simp]: (restrict-SN A A)+ = restrict-SN (A+) A
(is ?lhs = ?rhs)
proof

show ?lhs ⊆ ?rhs
proof

fix a b assume (a, b) ∈ ?lhs then show (a, b) ∈ ?rhs
unfolding restrict-SN-def by (induct rule: trancl.induct) auto

qed
next

25

show ?rhs ⊆ ?lhs
proof

fix a b assume (a, b) ∈ ?rhs
then have (a, b) ∈ A+ and SN-on A {a} unfolding restrict-SN-def by auto
then show (a, b) ∈ ?lhs
proof (induct rule: trancl.induct)

case (r-into-trancl x y) then show ?case unfolding restrict-SN-def by auto
next

case (trancl-into-trancl a b c)
then have IH : (a, b) ∈ ?lhs by auto
from trancl-into-trancl have (a, b) ∈ A∗ by auto

from this and ‹SN-on A {a}› have SN-on A {b} by (rule steps-preserve-SN-on)
with ‹(b, c) ∈ A› have (b, c) ∈ ?lhs unfolding restrict-SN-def by auto
with IH show ?case by simp

qed
qed

qed

lemma SN-imp-WN :
assumes SN A shows WN A

proof −
from ‹SN A› have wf (A−1) by (simp add: SN-defs wf-iff-no-infinite-down-chain)
show WN A
proof

fix a
show ∃ b. (a, b) ∈ A! unfolding normalizability-def NF-def Image-def

by (rule wfE-min [OF ‹wf (A−1)›, of a A∗ ‘‘ {a}, simplified])
(auto intro: rtrancl-into-rtrancl)

qed
qed

lemma UNC-imp-UNF :
assumes UNC r shows UNF r

proof − {
fix x y z assume (x, y) ∈ r ! and (x, z) ∈ r !

then have (x, y) ∈ r∗ and (x, z) ∈ r∗ and y ∈ NF r and z ∈ NF r by auto
then have (x, y) ∈ r↔∗ and (x, z) ∈ r↔∗ by auto
then have (z, x) ∈ r↔∗ using conversion-sym unfolding sym-def by best
with ‹(x, y) ∈ r↔∗› have (z, y) ∈ r↔∗ using conversion-trans unfolding

trans-def by best
from assms and this and ‹z ∈ NF r› and ‹y ∈ NF r› have z = y unfolding

UNC-def by auto
} then show ?thesis by auto
qed

lemma join-NF-imp-eq:
assumes (x, y) ∈ r↓ and x ∈ NF r and y ∈ NF r
shows x = y

proof −

26

from ‹(x, y) ∈ r↓› obtain z where (x, z)∈r∗ and (z, y)∈(r−1)∗ unfolding
join-def by auto

then have (y, z) ∈ r∗ unfolding rtrancl-converse by simp
from ‹x ∈ NF r› have (x, z) /∈ r+ using NF-no-trancl-step by best
then have x = z using rtranclD [OF ‹(x, z) ∈ r∗›] by auto
from ‹y ∈ NF r› have (y, z) /∈ r+ using NF-no-trancl-step by best
then have y = z using rtranclD [OF ‹(y, z) ∈ r∗›] by auto
with ‹x = z› show ?thesis by simp

qed

lemma rtrancl-Restr :
assumes (x, y) ∈ (Restr r A)∗

shows (x, y) ∈ r∗

using assms by induct auto

lemma join-mono:
assumes r ⊆ s
shows r↓ ⊆ s↓
using rtrancl-mono [OF assms] by (auto simp: join-def rtrancl-converse)

lemma CR-iff-meet-subset-join: CR r = (r↑ ⊆ r↓)
proof
assume CR r show r↑ ⊆ r↓

proof (rule subrelI)
fix x y assume (x, y) ∈ r↑

then obtain z where (z, x) ∈ r∗ and (z, y) ∈ r∗ using meetD by best
with ‹CR r› show (x, y) ∈ r↓ by (auto simp: CR-defs)

qed
next
assume r↑ ⊆ r↓ {
fix x y z assume (x, y) ∈ r∗ and (x, z) ∈ r∗

then have (y, z) ∈ r↑ unfolding meet-def rtrancl-converse by auto
with ‹r↑ ⊆ r↓› have (y, z) ∈ r↓ by auto

} then show CR r by (auto simp: CR-defs)
qed

lemma CR-divergence-imp-join:
assumes CR r and (x, y) ∈ r∗ and (x, z) ∈ r∗

shows (y, z) ∈ r↓

using assms by auto

lemma join-imp-conversion: r↓ ⊆ r↔∗

proof
fix x z assume (x, z) ∈ r↓

then obtain y where (x, y) ∈ r∗ and (z, y) ∈ r∗ by auto
then have (x, y) ∈ r↔∗ and (z, y) ∈ r↔∗ by auto
from ‹(z, y) ∈ r↔∗› have (y, z) ∈ r↔∗ using conversion-sym unfolding sym-def

by best

27

with ‹(x, y) ∈ r↔∗› show (x, z) ∈ r↔∗ using conversion-trans unfolding
trans-def by best
qed

lemma meet-imp-conversion: r↑ ⊆ r↔∗

proof (rule subrelI)
fix y z assume (y, z) ∈ r↑

then obtain x where (x, y) ∈ r∗ and (x, z) ∈ r∗ by auto
then have (x, y) ∈ r↔∗ and (x, z) ∈ r↔∗ by auto
from ‹(x, y) ∈ r↔∗› have (y, x) ∈ r↔∗ using conversion-sym unfolding sym-def

by best
with ‹(x, z) ∈ r↔∗› show (y, z) ∈ r↔∗ using conversion-trans unfolding

trans-def by best
qed

lemma CR-imp-UNF :
assumes CR r shows UNF r

proof − {
fix x y z assume (x, y) ∈ r ! and (x, z) ∈ r !

then have (x, y) ∈ r∗ and y ∈ NF r and (x, z) ∈ r∗ and z ∈ NF r
unfolding normalizability-def by auto

from assms and ‹(x, y) ∈ r∗› and ‹(x, z) ∈ r∗› have (y, z) ∈ r↓

by (rule CR-divergence-imp-join)
from this and ‹y ∈ NF r› and ‹z ∈ NF r› have y = z by (rule join-NF-imp-eq)

} then show ?thesis by auto
qed

lemma CR-iff-conversion-imp-join: CR r = (r↔∗ ⊆ r↓)
proof (intro iffI subrelI)

fix x y assume CR r and (x, y) ∈ r↔∗

then obtain n where (x, y) ∈ (r↔)^^n unfolding conversion-def rtrancl-is-UN-relpow
by auto

then show (x, y) ∈ r↓

proof (induct n arbitrary: x)
case 0
assume (x, y) ∈ r↔ ^^ 0 then have x = y by simp
show ?case unfolding ‹x = y› by auto

next
case (Suc n)
from ‹(x, y) ∈ r↔ ^^ Suc n› obtain z where (x, z) ∈ r↔ and (z, y) ∈ r↔

^^ n
using relpow-Suc-D2 by best

with Suc have (z, y) ∈ r↓ by simp
from ‹(x, z) ∈ r↔› show ?case
proof
assume (x, z) ∈ r with ‹(z, y) ∈ r↓› show ?thesis by (auto intro: rtrancl-join-join)
next

assume (x, z) ∈ r−1

then have (z, x) ∈ r∗ by simp

28

from ‹(z, y) ∈ r↓› obtain z ′ where (z, z ′) ∈ r∗ and (y, z ′) ∈ r∗ by auto
from ‹CR r› and ‹(z, x) ∈ r∗› and ‹(z, z ′) ∈ r∗› have (x, z ′) ∈ r↓

by (rule CR-divergence-imp-join)
then obtain x ′ where (x, x ′) ∈ r∗ and (z ′, x ′) ∈ r∗ by auto
with ‹(y, z ′) ∈ r∗› show ?thesis by auto

qed
qed

next
assume r↔∗ ⊆ r↓ then show CR r unfolding CR-iff-meet-subset-join

using meet-imp-conversion by auto
qed

lemma CR-imp-conversionIff-join:
assumes CR r shows r↔∗ = r↓

proof
show r↔∗ ⊆ r↓ using CR-iff-conversion-imp-join assms by auto

next
show r↓ ⊆ r↔∗ by (rule join-imp-conversion)

qed

lemma sym-join: sym (join r) by (auto simp: sym-def)

lemma join-sym: (s, t) ∈ A↓ =⇒ (t, s) ∈ A↓ by auto

lemma CR-join-left-I :
assumes CR r and (x, y) ∈ r∗ and (x, z) ∈ r↓ shows (y, z) ∈ r↓

proof −
from ‹(x, z) ∈ r↓› obtain x ′ where (x, x ′) ∈ r∗ and (z, x ′) ∈ r↓ by auto
from ‹CR r› and ‹(x, x ′) ∈ r∗› and ‹(x, y) ∈ r∗› have (x, y) ∈ r↓ by auto
then have (y, x) ∈ r↓ using join-sym by best
from ‹CR r› have r↔∗ = r↓ by (rule CR-imp-conversionIff-join)
from ‹(y, x) ∈ r↓› and ‹(x, z) ∈ r↓› show ?thesis using conversion-trans

unfolding trans-def ‹r↔∗ = r↓› [symmetric] by best
qed

lemma CR-join-right-I :
assumes CR r and (x, y) ∈ r↓ and (y, z) ∈ r∗ shows (x, z) ∈ r↓

proof −
have r↔∗ = r↓ by (rule CR-imp-conversionIff-join [OF ‹CR r›])
from ‹(y, z) ∈ r∗› have (y, z) ∈ r↔∗ by auto
with ‹(x, y) ∈ r↓› show ?thesis unfolding ‹r↔∗ = r↓› [symmetric] using

conversion-trans
unfolding trans-def by fast

qed

lemma NF-not-suc:
assumes (x, y) ∈ r∗ and x ∈ NF r shows x = y

proof −
from ‹x ∈ NF r› have ∀ y. (x, y) /∈ r using NF-no-step by auto

29

then have x /∈ Domain r unfolding Domain-unfold by simp
from ‹(x, y) ∈ r∗› show ?thesis unfolding Not-Domain-rtrancl [OF ‹x /∈ Do-

main r›] by simp
qed

lemma semi-complete-imp-conversionIff-same-NF :
assumes semi-complete r
shows ((x, y) ∈ r↔∗) = (∀ u v. (x, u) ∈ r ! ∧ (y, v) ∈ r ! −→ u = v)

proof −
from assms have WN r and CR r unfolding semi-complete-defs by auto
then have r↔∗ = r↓ using CR-imp-conversionIff-join by auto
show ?thesis
proof

assume (x, y) ∈ r↔∗

from ‹(x, y) ∈ r↔∗› have (x, y) ∈ r↓ unfolding ‹r↔∗ = r↓› .
show ∀ u v. (x, u) ∈ r ! ∧ (y, v) ∈ r ! −→ u = v
proof (intro allI impI , elim conjE)

fix u v assume (x, u) ∈ r ! and (y, v) ∈ r !

then have (x, u) ∈ r∗ and (y, v) ∈ r∗ and u ∈ NF r and v ∈ NF r by auto
from ‹CR r› and ‹(x, u) ∈ r∗› and ‹(x, y) ∈ r↓› have (u, y) ∈ r↓

by (auto intro: CR-join-left-I)
then have (y, u) ∈ r↓ using join-sym by best
with ‹(x, y) ∈ r↓› have (x, u) ∈ r↓ unfolding ‹r↔∗ = r↓› [symmetric]

using conversion-trans unfolding trans-def by best
from ‹CR r› and ‹(x, y) ∈ r↓› and ‹(y, v) ∈ r∗› have (x, v) ∈ r↓

by (auto intro: CR-join-right-I)
then have (v, x) ∈ r↓ using join-sym unfolding sym-def by best
with ‹(x, u) ∈ r↓› have (v, u) ∈ r↓ unfolding ‹r↔∗ = r↓› [symmetric]

using conversion-trans unfolding trans-def by best
then obtain v ′ where (v, v ′) ∈ r∗ and (u, v ′) ∈ r∗ by auto
from ‹(u, v ′) ∈ r∗› and ‹u ∈ NF r› have u = v ′ by (rule NF-not-suc)
from ‹(v, v ′) ∈ r∗› and ‹v ∈ NF r› have v = v ′ by (rule NF-not-suc)
then show u = v unfolding ‹u = v ′› by simp

qed
next

assume equal-NF :∀ u v. (x, u) ∈ r ! ∧ (y, v) ∈ r ! −→ u = v
from ‹WN r› obtain u where (x, u) ∈ r ! by auto
from ‹WN r› obtain v where (y, v) ∈ r ! by auto
from ‹(x, u) ∈ r !› and ‹(y, v) ∈ r !› have u = v using equal-NF by simp
from ‹(x, u) ∈ r !› and ‹(y, v) ∈ r !› have (x, v) ∈ r∗ and (y, v) ∈ r∗

unfolding ‹u = v› by auto
then have (x, v) ∈ r↔∗ and (y, v) ∈ r↔∗ by auto
from ‹(y, v) ∈ r↔∗› have (v, y) ∈ r↔∗ using conversion-sym unfolding

sym-def by best
with ‹(x, v) ∈ r↔∗› show (x, y) ∈ r↔∗ using conversion-trans unfolding

trans-def by best
qed

qed

30

lemma CR-imp-UNC :
assumes CR r shows UNC r

proof − {
fix x y assume x ∈ NF r and y ∈ NF r and (x, y) ∈ r↔∗

have r↔∗ = r↓ by (rule CR-imp-conversionIff-join [OF assms])
from ‹(x, y) ∈ r↔∗› have (x, y) ∈ r↓ unfolding ‹r↔∗ = r↓› by simp
then obtain x ′ where (x, x ′) ∈ r∗ and (y, x ′) ∈ r∗ by best
from ‹(x, x ′) ∈ r∗› and ‹x ∈ NF r› have x = x ′ by (rule NF-not-suc)
from ‹(y, x ′) ∈ r∗› and ‹y ∈ NF r› have y = x ′ by (rule NF-not-suc)
then have x = y unfolding ‹x = x ′› by simp

} then show ?thesis by (auto simp: UNC-def)
qed

lemma WN-UNF-imp-CR:
assumes WN r and UNF r shows CR r

proof − {
fix x y z assume (x, y) ∈ r∗ and (x, z) ∈ r∗

from assms obtain y ′ where (y, y ′) ∈ r ! unfolding WN-defs by best
with ‹(x, y) ∈ r∗› have (x, y ′) ∈ r ! by auto
from assms obtain z ′ where (z, z ′) ∈ r ! unfolding WN-defs by best
with ‹(x, z) ∈ r∗› have (x, z ′) ∈ r ! by auto
with ‹(x, y ′) ∈ r !› have y ′ = z ′ using ‹UNF r› unfolding UNF-defs by auto
from ‹(y, y ′) ∈ r !› and ‹(z, z ′) ∈ r !› have (y, z) ∈ r↓ unfolding ‹y ′ = z ′› by

auto
} then show ?thesis by auto
qed

definition diamond :: ′a rel ⇒ bool (‹♦›) where
♦ r ←→ (r−1 O r) ⊆ (r O r−1)

lemma diamond-I [intro]: (r−1 O r) ⊆ (r O r−1) =⇒ ♦ r unfolding diamond-def
by simp

lemma diamond-E [elim]: ♦ r =⇒ ((r−1 O r) ⊆ (r O r−1) =⇒ P) =⇒ P
unfolding diamond-def by simp

lemma diamond-imp-semi-confluence:
assumes ♦ r shows (r−1 O r∗) ⊆ r↓

proof (rule subrelI)
fix y z assume (y, z) ∈ r−1 O r∗

then obtain x where (x, y) ∈ r and (x, z) ∈ r∗ by best
then obtain n where (x, z) ∈ r^^n using rtrancl-imp-UN-relpow by best
with ‹(x, y) ∈ r› show (y, z) ∈ r↓

proof (induct n arbitrary: x z y)
case 0 then show ?case by auto

next
case (Suc n)
from ‹(x, z) ∈ r^^Suc n› obtain x ′ where (x, x ′) ∈ r and (x ′, z) ∈ r^^n

using relpow-Suc-D2 by best

31

with ‹(x, y) ∈ r› have (y, x ′) ∈ (r−1 O r) by auto
with ‹♦ r› have (y, x ′) ∈ (r O r−1) by auto
then obtain y ′ where (x ′, y ′) ∈ r and (y, y ′) ∈ r by best
with Suc and ‹(x ′, z) ∈ r^^n› have (y ′, z) ∈ r↓ by auto
with ‹(y, y ′) ∈ r› show ?case by (auto intro: rtrancl-join-join)

qed
qed

lemma semi-confluence-imp-CR:
assumes (r−1 O r∗) ⊆ r↓ shows CR r

proof − {
fix x y z assume (x, y) ∈ r∗ and (x, z) ∈ r∗

then obtain n where (x, z) ∈ r^^n using rtrancl-imp-UN-relpow by best
with ‹(x, y) ∈ r∗› have (y, z) ∈ r↓

proof (induct n arbitrary: x y z)
case 0 then show ?case by auto

next
case (Suc n)
from ‹(x, z) ∈ r^^Suc n› obtain x ′ where (x, x ′) ∈ r and (x ′, z) ∈ r^^n

using relpow-Suc-D2 by best
from ‹(x, x ′) ∈ r› and ‹(x, y) ∈ r∗› have (x ′, y) ∈ (r−1 O r∗) by auto
with assms have (x ′, y) ∈ r↓ by auto
then obtain y ′ where (x ′, y ′) ∈ r∗ and (y, y ′) ∈ r∗ by best
with Suc and ‹(x ′, z) ∈ r^^n› have (y ′, z) ∈ r↓ by simp
then obtain u where (z, u) ∈ r∗ and (y ′, u) ∈ r∗ by best
from ‹(y, y ′) ∈ r∗› and ‹(y ′, u) ∈ r∗› have (y, u) ∈ r∗ by auto
with ‹(z, u) ∈ r∗› show ?case by best

qed
} then show ?thesis by auto
qed

lemma diamond-imp-CR:
assumes ♦ r shows CR r
using assms by (rule diamond-imp-semi-confluence [THEN semi-confluence-imp-CR])

lemma diamond-imp-CR ′:
assumes ♦ s and r ⊆ s and s ⊆ r∗ shows CR r
unfolding CR-iff-meet-subset-join

proof −
from ‹♦ s› have CR s by (rule diamond-imp-CR)
then have s↑ ⊆ s↓ unfolding CR-iff-meet-subset-join by simp
from ‹r ⊆ s› have r∗ ⊆ s∗ by (rule rtrancl-mono)
from ‹s ⊆ r∗› have s∗ ⊆ (r∗)∗ by (rule rtrancl-mono)
then have s∗ ⊆ r∗ by simp
with ‹r∗ ⊆ s∗› have r∗ = s∗ by simp
show r↑ ⊆ r↓ unfolding meet-def join-def rtrancl-converse ‹r∗ = s∗›

unfolding rtrancl-converse [symmetric] meet-def [symmetric]
join-def [symmetric] by (rule ‹s↑ ⊆ s↓›)

qed

32

lemma SN-imp-minimal:
assumes SN A
shows ∀Q x. x ∈ Q −→ (∃ z∈Q. ∀ y. (z, y) ∈ A −→ y /∈ Q)

proof (rule ccontr)
assume ¬ (∀Q x. x ∈ Q −→ (∃ z∈Q. ∀ y. (z, y) ∈ A −→ y /∈ Q))
then obtain Q x where x ∈ Q and ∀ z∈Q. ∃ y. (z, y) ∈ A ∧ y ∈ Q by auto
then have ∀ z. ∃ y. z ∈ Q −→ (z, y) ∈ A ∧ y ∈ Q by auto
then have ∃ f . ∀ x. x ∈ Q −→ (x, f x) ∈ A ∧ f x ∈ Q by (rule choice)
then obtain f where a:∀ x. x ∈ Q −→ (x, f x) ∈ A ∧ f x ∈ Q (is ∀ x. ?P x)

by best
let ?S = λi. (f ^^ i) x
have ?S 0 = x by simp
have ∀ i. (?S i, ?S (Suc i)) ∈ A ∧ ?S (Suc i) ∈ Q
proof

fix i show (?S i, ?S (Suc i)) ∈ A ∧ ?S (Suc i) ∈ Q
by (induct i) (auto simp: ‹x ∈ Q› a)

qed
with ‹?S 0 = x› have ∃S . S 0 = x ∧ chain A S by fast
with assms show False by auto

qed

lemma SN-on-imp-on-minimal:
assumes SN-on r {x}
shows ∀Q. x ∈ Q −→ (∃ z∈Q. ∀ y. (z, y) ∈ r −→ y /∈ Q)

proof (rule ccontr)
assume ¬(∀Q. x ∈ Q −→ (∃ z∈Q. ∀ y. (z, y) ∈ r −→ y /∈ Q))
then obtain Q where x ∈ Q and ∀ z∈Q. ∃ y. (z, y) ∈ r ∧ y ∈ Q by auto
then have ∀ z. ∃ y. z ∈ Q −→ (z, y) ∈ r ∧ y ∈ Q by auto
then have ∃ f . ∀ x. x ∈ Q −→ (x, f x) ∈ r ∧ f x ∈ Q by (rule choice)
then obtain f where a: ∀ x. x ∈ Q −→ (x, f x) ∈ r ∧ f x ∈ Q (is ∀ x. ?P x)

by best
let ?S = λi. (f ^^ i) x
have ?S 0 = x by simp
have ∀ i. (?S i,?S(Suc i)) ∈ r ∧ ?S(Suc i) ∈ Q
proof

fix i show (?S i,?S(Suc i)) ∈ r ∧ ?S(Suc i) ∈ Q by (induct i) (auto simp:‹x
∈ Q› a)

qed
with ‹?S 0 = x› have ∃S . S 0 = x ∧ chain r S by fast
with assms show False by auto

qed

lemma minimal-imp-wf :
assumes ∀Q x . x ∈ Q −→ (∃ z∈Q. ∀ y. (z, y) ∈ r −→ y /∈ Q)
shows wf (r−1)

proof (rule ccontr)
assume ¬ wf (r−1)
then have ∃P. (∀ x. (∀ y. (x, y) ∈ r −→ P y) −→ P x) ∧ (∃ x. ¬ P x) unfolding

33

wf-def by simp
then obtain P x where suc:∀ x. (∀ y. (x, y) ∈ r −→ P y) −→ P x and ¬ P x

by auto
let ?Q = {x. ¬ P x}
from ‹¬ P x› have x ∈ ?Q by simp
from assms have ∀ x. x ∈ ?Q −→ (∃ z∈?Q. ∀ y. (z, y) ∈ r −→ y /∈ ?Q) by (rule

allE [where x = ?Q])
with ‹x ∈ ?Q› obtain z where z ∈ ?Q and min: ∀ y. (z, y) ∈ r −→ y /∈ ?Q

by best
from ‹z ∈ ?Q› have ¬ P z by simp
with suc obtain y where (z, y) ∈ r and ¬ P y by best
then have y ∈ ?Q by simp
with ‹(z, y) ∈ r› and min show False by simp

qed

lemmas SN-imp-wf = SN-imp-minimal [THEN minimal-imp-wf]

lemma wf-imp-SN :
assumes wf (A−1) shows SN A

proof − {
fix a
let ?P = λa. ¬(∃S . S 0 = a ∧ chain A S)
from ‹wf (A−1)› have ?P a
proof induct

case (less a)
then have IH :

∧
b. (a, b) ∈ A =⇒ ?P b by auto

show ?P a
proof (rule ccontr)

assume ¬ ?P a
then obtain S where S 0 = a and chain A S by auto
then have (S 0 , S 1) ∈ A by auto
with IH have ?P (S 1) unfolding ‹S 0 = a› by auto
with ‹chain A S› show False by auto

qed
qed
then have SN-on A {a} unfolding SN-defs by auto

} then show ?thesis by fast
qed

lemma SN-nat-gt: SN {(a, b :: nat) . a > b}
proof −

from wf-less have wf ({(x, y) . (x :: nat) > y}−1) unfolding converse-unfold
by auto

from wf-imp-SN [OF this] show ?thesis .
qed

lemma SN-iff-wf : SN A = wf (A−1) by (auto simp: SN-imp-wf wf-imp-SN)

34

lemma SN-imp-acyclic: SN R =⇒ acyclic R
using wf-acyclic [of R−1, unfolded SN-iff-wf [symmetric]] by auto

lemma SN-induct:
assumes sn: SN r and step:

∧
a. (

∧
b. (a, b) ∈ r =⇒ P b) =⇒ P a

shows P a
using sn unfolding SN-iff-wf proof induct

case (less a)
with step show ?case by best

qed

lemmas SN-induct-rule = SN-induct [consumes 1 , case-names IH , induct pred:
SN]

lemma SN-on-induct [consumes 2 , case-names IH , induct pred: SN-on]:
assumes SN : SN-on R A

and s ∈ A
and imp:

∧
t. (

∧
u. (t, u) ∈ R =⇒ P u) =⇒ P t

shows P s
proof −

let ?R = restrict-SN R R
let ?P = λt. SN-on R {t} −→ P t
have SN-on R {s} −→ P s
proof (rule SN-induct [OF SN-restrict-SN-idemp [of R], of ?P])

fix a
assume ind:

∧
b. (a, b) ∈ ?R =⇒ SN-on R {b} −→ P b

show SN-on R {a} −→ P a
proof

assume SN : SN-on R {a}
show P a
proof (rule imp)

fix b
assume (a, b) ∈ R
with SN step-preserves-SN-on [OF this SN]
show P b using ind [of b] unfolding restrict-SN-def by auto

qed
qed

qed
with SN show P s using ‹s ∈ A› unfolding SN-on-def by blast

qed

lemma accp-imp-SN-on:
assumes

∧
x. x ∈ A =⇒ Wellfounded.accp g x

shows SN-on {(y, z). g z y} A
proof − {

fix x assume x ∈ A
from assms [OF this]

35

have SN-on {(y, z). g z y} {x}
proof (induct rule: accp.induct)

case (accI x)
show ?case
proof

fix f
assume x: f 0 ∈ {x} and steps: ∀ i. (f i, f (Suc i)) ∈ {a. (λ(y, z). g z y) a}
then have g (f 1) x by auto
from accI (2)[OF this] steps x show False unfolding SN-on-def by auto

qed
qed
}
then show ?thesis unfolding SN-on-def by blast

qed

lemma SN-on-imp-accp:
assumes SN-on {(y, z). g z y} A
shows ∀ x∈A. Wellfounded.accp g x

proof
fix x assume x ∈ A
with assms show Wellfounded.accp g x
proof (induct rule: SN-on-induct)

case (IH x)
show ?case
proof

fix y
assume g y x
with IH show Wellfounded.accp g y by simp

qed
qed

qed

lemma SN-on-conv-accp:
SN-on {(y, z). g z y} {x} = Wellfounded.accp g x
using SN-on-imp-accp [of g {x}]

accp-imp-SN-on [of {x} g]
by auto

lemma SN-on-conv-acc: SN-on {(y, z). (z, y) ∈ r} {x} ←→ x ∈ Wellfounded.acc
r

unfolding SN-on-conv-accp accp-acc-eq ..

lemma acc-imp-SN-on:
assumes x ∈ Wellfounded.acc r shows SN-on {(y, z). (z, y) ∈ r} {x}
using assms unfolding SN-on-conv-acc by simp

lemma SN-on-imp-acc:
assumes SN-on {(y, z). (z, y) ∈ r} {x} shows x ∈ Wellfounded.acc r
using assms unfolding SN-on-conv-acc by simp

36

2.3 Newman’s Lemma
lemma rtrancl-len-E [elim]:

assumes (x, y) ∈ r∗ obtains n where (x, y) ∈ r^^n
using rtrancl-imp-UN-relpow [OF assms] by best

lemma relpow-Suc-E2 ′ [elim]:
assumes (x, z) ∈ A^^Suc n obtains y where (x, y) ∈ A and (y, z) ∈ A∗

proof −
assume assm:

∧
y. (x, y) ∈ A =⇒ (y, z) ∈ A∗ =⇒ thesis

from relpow-Suc-E2 [OF assms] obtain y where (x, y) ∈ A and (y, z) ∈ A^^n
by auto

then have (y, z) ∈ A∗ using relpow-imp-rtrancl by auto
from assm [OF ‹(x, y) ∈ A› this] show thesis .

qed

lemmas SN-on-induct ′ [consumes 1 , case-names IH] = SN-on-induct [OF - sin-
gletonI]

lemma Newman-local:
assumes SN-on r X and WCR: WCR-on r {x. SN-on r {x}}
shows CR-on r X

proof − {
fix x
assume x ∈ X
with assms have SN-on r {x} unfolding SN-on-def by auto
with this have CR-on r {x}
proof (induct rule: SN-on-induct ′)

case (IH x) show ?case
proof

fix y z assume (x, y) ∈ r∗ and (x, z) ∈ r∗

from ‹(x, y) ∈ r∗› obtain m where (x, y) ∈ r^^m ..
from ‹(x, z) ∈ r∗› obtain n where (x, z) ∈ r^^n ..
show (y, z) ∈ r↓

proof (cases n)
case 0
from ‹(x, z) ∈ r^^n› have eq: x = z by (simp add: 0)
from ‹(x, y) ∈ r∗› show ?thesis unfolding eq ..

next
case (Suc n ′)
from ‹(x, z) ∈ r^^n› [unfolded Suc] obtain t where (x, t) ∈ r and (t, z)

∈ r∗ ..
show ?thesis
proof (cases m)

case 0
from ‹(x, y) ∈ r^^m› have eq: x = y by (simp add: 0)
from ‹(x, z) ∈ r∗› show ?thesis unfolding eq ..

next
case (Suc m ′)
from ‹(x, y) ∈ r^^m› [unfolded Suc] obtain s where (x, s) ∈ r and (s,

37

y) ∈ r∗ ..
from WCR IH (2) have WCR-on r {x} unfolding WCR-on-def by auto
with ‹(x, s) ∈ r› and ‹(x, t) ∈ r› have (s, t) ∈ r↓ by auto
then obtain u where (s, u) ∈ r∗ and (t, u) ∈ r∗ ..

from ‹(x, s) ∈ r› IH (2) have SN-on r {s} by (rule step-preserves-SN-on)
from IH (1)[OF ‹(x, s) ∈ r› this] have CR-on r {s} .
from this and ‹(s, u) ∈ r∗› and ‹(s, y) ∈ r∗› have (u, y) ∈ r↓ by auto
then obtain v where (u, v) ∈ r∗ and (y, v) ∈ r∗ ..

from ‹(x, t) ∈ r› IH (2) have SN-on r {t} by (rule step-preserves-SN-on)
from IH (1)[OF ‹(x, t) ∈ r› this] have CR-on r {t} .
moreover from ‹(t, u) ∈ r∗› and ‹(u, v) ∈ r∗› have (t, v) ∈ r∗ by auto
ultimately have (z, v) ∈ r↓ using ‹(t, z) ∈ r∗› by auto
then obtain w where (z, w) ∈ r∗ and (v, w) ∈ r∗ ..
from ‹(y, v) ∈ r∗› and ‹(v, w) ∈ r∗› have (y, w) ∈ r∗ by auto
with ‹(z, w) ∈ r∗› show ?thesis by auto

qed
qed

qed
qed
}
then show ?thesis unfolding CR-on-def by blast

qed

lemma Newman: SN r =⇒ WCR r =⇒ CR r
using Newman-local [of r UNIV]
unfolding WCR-on-def by auto

lemma Image-SN-on:
assumes SN-on r (r ‘‘ A)
shows SN-on r A

proof
fix f
assume f 0 ∈ A and chain: chain r f
then have f (Suc 0) ∈ r ‘‘ A by auto
with assms have SN-on r {f (Suc 0)} by (auto simp add: ‹f 0 ∈ A› SN-defs)
moreover have ¬ SN-on r {f (Suc 0)}
proof −

have f (Suc 0) ∈ {f (Suc 0)} by simp
moreover from chain have chain r (f ◦ Suc) by auto
ultimately show ?thesis by auto

qed
ultimately show False by simp

qed

lemma SN-on-Image-conv: SN-on r (r ‘‘ A) = SN-on r A
using SN-on-Image and Image-SN-on by blast

If all successors are terminating, then the current element is also termi-
nating.

38

lemma step-reflects-SN-on:
assumes (

∧
b. (a, b) ∈ r =⇒ SN-on r {b})

shows SN-on r {a}
using assms and Image-SN-on [of r {a}] by (auto simp: SN-defs)

lemma SN-on-all-reducts-SN-on-conv:
SN-on r {a} = (∀ b. (a, b) ∈ r −→ SN-on r {b})
using SN-on-Image-conv [of r {a}] by (auto simp: SN-defs)

lemma SN-imp-SN-trancl: SN R =⇒ SN (R+)
unfolding SN-iff-wf by (rule wf-converse-trancl)

lemma SN-trancl-imp-SN :
assumes SN (R+) shows SN R
using assms by (rule SN-on-trancl-imp-SN-on)

lemma SN-trancl-SN-conv: SN (R+) = SN R
using SN-trancl-imp-SN [of R] SN-imp-SN-trancl [of R] by blast

lemma SN-inv-image: SN R =⇒ SN (inv-image R f) unfolding SN-iff-wf by
simp

lemma SN-subset: SN R =⇒ R ′ ⊆ R =⇒ SN R ′ unfolding SN-defs by blast

lemma SN-pow-imp-SN :
assumes SN (A^^Suc n) shows SN A

proof (rule ccontr)
assume ¬ SN A
then obtain S where chain A S unfolding SN-defs by auto
from chain-imp-relpow [OF this]

have step:
∧

i. (S i, S (i + (Suc n))) ∈ A^^Suc n .
let ?T = λi. S (i ∗ (Suc n))
have chain (A^^Suc n) ?T
proof

fix i show (?T i, ?T (Suc i)) ∈ A^^Suc n unfolding mult-Suc
using step [of i ∗ Suc n] by (simp only: add.commute)

qed
then have ¬ SN (A^^Suc n) unfolding SN-defs by fast
with assms show False by simp

qed

lemma pow-Suc-subset-trancl: R^^(Suc n) ⊆ R+

using trancl-power [of - R] by blast

lemma SN-imp-SN-pow:
assumes SN R shows SN (R^^Suc n)
using SN-subset [where R=R+, OF SN-imp-SN-trancl [OF assms] pow-Suc-subset-trancl]

by simp

39

lemma SN-pow: SN R ←→ SN (R ^^ Suc n)
by (rule iffI , rule SN-imp-SN-pow, assumption, rule SN-pow-imp-SN , assump-

tion)

lemma SN-on-trancl:
assumes SN-on r A shows SN-on (r+) A

using assms
proof (rule contrapos-pp)

let ?r = restrict-SN r r
assume ¬ SN-on (r+) A
then obtain f where f 0 ∈ A and chain: chain (r+) f by auto
have SN ?r by (rule SN-restrict-SN-idemp)
then have SN (?r+) by (rule SN-imp-SN-trancl)
have ∀ i. (f 0 , f i) ∈ r∗

proof
fix i show (f 0 , f i) ∈ r∗

proof (induct i)
case 0 show ?case ..

next
case (Suc i)
from chain have (f i, f (Suc i)) ∈ r+ ..
with Suc show ?case by auto

qed
qed
with assms have ∀ i. SN-on r {f i}

using steps-preserve-SN-on [of f 0 - r]
and ‹f 0 ∈ A›
and SN-on-subset2 [of {f 0} A] by auto

with chain have chain (?r+) f
unfolding restrict-SN-trancl-simp
unfolding restrict-SN-def by auto

then have ¬ SN-on (?r+) {f 0} by auto
with ‹SN (?r+)› have False by (simp add: SN-defs)
then show ¬ SN-on r A by simp

qed

lemma SN-on-trancl-SN-on-conv: SN-on (R+) T = SN-on R T
using SN-on-trancl-imp-SN-on [of R] SN-on-trancl [of R] by blast

Restrict an ARS to elements of a given set.
definition restrict :: ′a rel ⇒ ′a set ⇒ ′a rel where

restrict r S = {(x, y). x ∈ S ∧ y ∈ S ∧ (x, y) ∈ r}

lemma SN-on-restrict:
assumes SN-on r A
shows SN-on (restrict r S) A (is SN-on ?r A)

proof (rule ccontr)

40

assume ¬ SN-on ?r A
then have ∃ f . f 0 ∈ A ∧ chain ?r f by auto
then have ∃ f . f 0 ∈ A ∧ chain r f unfolding restrict-def by auto
with ‹SN-on r A› show False by auto

qed

lemma restrict-rtrancl: (restrict r S)∗ ⊆ r∗ (is ?r∗ ⊆ r∗)
proof − {

fix x y assume (x, y) ∈ ?r∗ then have (x, y) ∈ r∗ unfolding restrict-def by
induct auto
} then show ?thesis by auto
qed

lemma rtrancl-Image-step:
assumes a ∈ r∗ ‘‘ A

and (a, b) ∈ r∗

shows b ∈ r∗ ‘‘ A
proof −

from assms(1) obtain c where c ∈ A and (c, a) ∈ r∗ by auto
with assms have (c, b) ∈ r∗ by auto
with ‹c ∈ A› show ?thesis by auto

qed

lemma WCR-SN-on-imp-CR-on:
assumes WCR r and SN-on r A shows CR-on r A

proof −
let ?S = r∗ ‘‘ A
let ?r = restrict r ?S
have ∀ x. SN-on ?r {x}
proof

fix y have y /∈ ?S ∨ y ∈ ?S by simp
then show SN-on ?r {y}
proof

assume y /∈ ?S then show ?thesis unfolding restrict-def by auto
next

assume y ∈ ?S
then have y ∈ r∗ ‘‘ A by simp
with SN-on-Image-rtrancl [OF ‹SN-on r A›]

have SN-on r {y} using SN-on-subset2 [of {y} r∗ ‘‘ A] by blast
then show ?thesis by (rule SN-on-restrict)

qed
qed
then have SN ?r unfolding SN-defs by auto
{

fix x y assume (x, y) ∈ r∗ and x ∈ ?S and y ∈ ?S
then obtain n where (x, y) ∈ r^^n and x ∈ ?S and y ∈ ?S

using rtrancl-imp-UN-relpow by best
then have (x, y) ∈ ?r∗

proof (induct n arbitrary: x y)

41

case 0 then show ?case by simp
next

case (Suc n)
from ‹(x, y) ∈ r^^Suc n› obtain x ′ where (x, x ′) ∈ r and (x ′, y) ∈ r^^n

using relpow-Suc-D2 by best
then have (x, x ′) ∈ r∗ by simp
with ‹x ∈ ?S› have x ′ ∈ ?S by (rule rtrancl-Image-step)
with Suc and ‹(x ′, y) ∈ r^^n› have (x ′, y) ∈ ?r∗ by simp
from ‹(x, x ′) ∈ r› and ‹x ∈ ?S› and ‹x ′ ∈ ?S› have (x, x ′) ∈ ?r

unfolding restrict-def by simp
with ‹(x ′, y) ∈ ?r∗› show ?case by simp

qed
}
then have a:∀ x y. (x, y) ∈ r∗ ∧ x ∈ ?S ∧ y ∈ ?S −→ (x, y) ∈ ?r∗ by simp
{

fix x ′ y z assume (x ′, y) ∈ ?r and (x ′, z) ∈ ?r
then have x ′ ∈ ?S and y ∈ ?S and z ∈ ?S and (x ′, y) ∈ r and (x ′, z) ∈ r

unfolding restrict-def by auto
with ‹WCR r› have (y, z) ∈ r↓ by auto
then obtain u where (y, u) ∈ r∗ and (z, u) ∈ r∗ by auto
from ‹x ′ ∈ ?S› obtain x where x ∈ A and (x, x ′) ∈ r∗ by auto
from ‹(x ′, y) ∈ r› have (x ′, y) ∈ r∗ by auto
with ‹(y, u) ∈ r∗› have (x ′, u) ∈ r∗ by auto
with ‹(x, x ′) ∈ r∗› have (x, u) ∈ r∗ by simp
then have u ∈ ?S using ‹x ∈ A› by auto
from ‹y ∈ ?S› and ‹u ∈ ?S› and ‹(y, u) ∈ r∗› have (y, u) ∈ ?r∗ using a by

auto
from ‹z ∈ ?S› and ‹u ∈ ?S› and ‹(z, u) ∈ r∗› have (z, u) ∈ ?r∗ using a by

auto
with ‹(y, u) ∈ ?r∗› have (y, z) ∈ ?r↓ by auto

}
then have WCR ?r by auto
have CR ?r using Newman [OF ‹SN ?r› ‹WCR ?r›] by simp
{

fix x y z assume x ∈ A and (x, y) ∈ r∗ and (x, z) ∈ r∗

then have y ∈ ?S and z ∈ ?S by auto
have x ∈ ?S using ‹x ∈ A› by auto
from a and ‹(x, y) ∈ r∗› and ‹x ∈ ?S› and ‹y ∈ ?S› have (x, y) ∈ ?r∗ by

simp
from a and ‹(x, z) ∈ r∗› and ‹x ∈ ?S› and ‹z ∈ ?S› have (x, z) ∈ ?r∗ by

simp
with ‹CR ?r› and ‹(x, y) ∈ ?r∗› have (y, z) ∈ ?r↓ by auto
then obtain u where (y, u) ∈ ?r∗ and (z, u) ∈ ?r∗ by best
then have (y, u) ∈ r∗ and (z, u) ∈ r∗ using restrict-rtrancl by auto
then have (y, z) ∈ r↓ by auto

}
then show ?thesis by auto

qed

42

lemma SN-on-Image-normalizable:
assumes SN-on r A
shows ∀ a∈A. ∃ b. b ∈ r ! ‘‘ A

proof
fix a assume a: a ∈ A
show ∃ b. b ∈ r ! ‘‘ A
proof (rule ccontr)

assume ¬ (∃ b. b ∈ r ! ‘‘ A)
then have A: ∀ b. (a, b) ∈ r∗ −→ b /∈ NF r using a by auto
then have a /∈ NF r by auto
let ?Q = {c. (a, c) ∈ r∗ ∧ c /∈ NF r}
have a ∈ ?Q using ‹a /∈ NF r› by simp
have ∀ c∈?Q. ∃ b. (c, b) ∈ r ∧ b ∈ ?Q
proof

fix c
assume c ∈ ?Q
then have (a, c) ∈ r∗ and c /∈ NF r by auto
then obtain d where (c, d) ∈ r by auto
with ‹(a, c) ∈ r∗› have (a, d) ∈ r∗ by simp
with A have d /∈ NF r by simp
with ‹(c, d) ∈ r› and ‹(a, c) ∈ r∗›

show ∃ b. (c, b) ∈ r ∧ b ∈ ?Q by auto
qed
with ‹a ∈ ?Q› have a ∈ ?Q ∧ (∀ c∈?Q. ∃ b. (c, b) ∈ r ∧ b ∈ ?Q) by auto
then have ∃Q. a ∈ Q ∧ (∀ c∈Q. ∃ b. (c, b) ∈ r ∧ b ∈ Q) by (rule exI [of -

?Q])
then have ¬ (∀Q. a ∈ Q −→ (∃ c∈Q. ∀ b. (c, b) ∈ r −→ b /∈ Q)) by simp
with SN-on-imp-on-minimal [of r a] have ¬ SN-on r {a} by blast
with assms and ‹a ∈ A› and SN-on-subset2 [of {a} A r] show False by simp

qed
qed

lemma SN-on-imp-normalizability:
assumes SN-on r {a} shows ∃ b. (a, b) ∈ r !

using SN-on-Image-normalizable [OF assms] by auto

2.4 Commutation
definition commute :: ′a rel ⇒ ′a rel ⇒ bool where

commute r s ←→ ((r−1)∗ O s∗) ⊆ (s∗ O (r−1)∗)

lemma CR-iff-self-commute: CR r = commute r r
unfolding commute-def CR-iff-meet-subset-join meet-def join-def
by simp

lemma rtrancl-imp-rtrancl-UN :
assumes (x, y) ∈ r∗ and r ∈ I
shows (x, y) ∈ (

⋃
r∈I . r)∗ (is (x, y) ∈ ?r∗)

43

using assms proof induct
case base then show ?case by simp

next
case (step y z)
then have (x, y) ∈ ?r∗ by simp
from ‹(y, z) ∈ r› and ‹r ∈ I › have (y, z) ∈ ?r∗ by auto
with ‹(x, y) ∈ ?r∗› show ?case by auto

qed

definition quasi-commute :: ′a rel ⇒ ′a rel ⇒ bool where
quasi-commute r s ←→ (s O r) ⊆ r O (r ∪ s)∗

lemma rtrancl-union-subset-rtrancl-union-trancl: (r ∪ s+)∗ = (r ∪ s)∗
proof

show (r ∪ s+)∗ ⊆ (r ∪ s)∗
proof (rule subrelI)

fix x y assume (x, y) ∈ (r ∪ s+)∗
then show (x, y) ∈ (r ∪ s)∗
proof (induct)

case base then show ?case by auto
next

case (step y z)
then have (y, z) ∈ r ∨ (y, z) ∈ s+ by auto
then have (y, z) ∈ (r ∪ s)∗
proof

assume (y, z) ∈ r then show ?thesis by auto
next

assume (y, z) ∈ s+
then have (y, z) ∈ s∗ by auto
then have (y, z) ∈ r∗ ∪ s∗ by auto
then show ?thesis using rtrancl-Un-subset by auto

qed
with ‹(x, y) ∈ (r ∪ s)∗› show ?case by simp

qed
qed

next
show (r ∪ s)∗ ⊆ (r ∪ s+)∗
proof (rule subrelI)

fix x y assume (x, y) ∈ (r ∪ s)∗
then show (x, y) ∈ (r ∪ s+)∗
proof (induct)

case base then show ?case by auto
next

case (step y z)
then have (y, z) ∈ (r ∪ s+)∗ by auto
with ‹(x, y) ∈ (r ∪ s+)∗› show ?case by auto

qed
qed

qed

44

lemma qc-imp-qc-trancl:
assumes quasi-commute r s shows quasi-commute r (s+)

unfolding quasi-commute-def
proof (rule subrelI)

fix x z assume (x, z) ∈ s+ O r
then obtain y where (x, y) ∈ s+ and (y, z) ∈ r by best
then show (x, z) ∈ r O (r ∪ s+)∗
proof (induct arbitrary: z)

case (base y)
then have (x, z) ∈ (s O r) by auto
with assms have (x, z) ∈ r O (r ∪ s)∗ unfolding quasi-commute-def by auto
then show ?case using rtrancl-union-subset-rtrancl-union-trancl by auto

next
case (step a b)
then have (a, z) ∈ (s O r) by auto
with assms have (a, z) ∈ r O (r ∪ s)∗ unfolding quasi-commute-def by auto
then obtain u where (a, u) ∈ r and (u, z) ∈ (r ∪ s)∗ by best
then have (u, z) ∈ (r ∪ s+)∗ using rtrancl-union-subset-rtrancl-union-trancl

by auto
from ‹(a, u) ∈ r› and step have (x, u) ∈ r O (r ∪ s+)∗ by auto
then obtain v where (x, v) ∈ r and (v, u) ∈ (r ∪ s+)∗ by best
with ‹(u, z) ∈ (r ∪ s+)∗› have (v, z) ∈ (r ∪ s+)∗ by auto
with ‹(x, v) ∈ r› show ?case by auto

qed
qed

lemma steps-reflect-SN-on:
assumes ¬ SN-on r {b} and (a, b) ∈ r∗

shows ¬ SN-on r {a}
using SN-on-Image-rtrancl [of r {a}]
and assms and SN-on-subset2 [of {b} r∗ ‘‘ {a} r] by blast

lemma chain-imp-not-SN-on:
assumes chain r f
shows ¬ SN-on r {f i}

proof −
let ?f = λj. f (i + j)
have ?f 0 ∈ {f i} by simp
moreover have chain r ?f using assms by auto
ultimately have ?f 0 ∈ {f i} ∧ chain r ?f by blast
then have ∃ g. g 0 ∈ {f i} ∧ chain r g by (rule exI [of - ?f])
then show ?thesis unfolding SN-defs by auto

qed

lemma quasi-commute-imp-SN :
assumes SN r and SN s and quasi-commute r s
shows SN (r ∪ s)

proof −

45

have quasi-commute r (s+) by (rule qc-imp-qc-trancl [OF ‹quasi-commute r s›])
let ?B = {a. ¬ SN-on (r ∪ s) {a}}
{

assume ¬ SN (r ∪ s)
then obtain a where a ∈ ?B unfolding SN-defs by fast
from ‹SN r› have ∀Q x. x ∈ Q −→ (∃ z∈Q. ∀ y. (z, y) ∈ r −→ y /∈ Q)

by (rule SN-imp-minimal)
then have ∀ x. x ∈ ?B −→ (∃ z∈?B. ∀ y. (z, y) ∈ r −→ y /∈ ?B) by (rule spec

[where x = ?B])
with ‹a ∈ ?B› obtain b where b ∈ ?B and min: ∀ y. (b, y) ∈ r −→ y /∈ ?B

by auto
from ‹b ∈ ?B› obtain S where S 0 = b and

chain: chain (r ∪ s) S unfolding SN-on-def by auto
let ?S = λi. S(Suc i)
have ?S 0 = S 1 by simp
from chain have chain (r ∪ s) ?S by auto
with ‹?S 0 = S 1 › have ¬ SN-on (r ∪ s) {S 1} unfolding SN-on-def by auto
from ‹S 0 = b› and chain have (b, S 1) ∈ r ∪ s by auto
with min and ‹¬ SN-on (r ∪ s) {S 1}› have (b, S 1) ∈ s by auto
let ?i = LEAST i. (S i, S(Suc i)) /∈ s
{

assume chain s S
with ‹S 0 = b› have ¬ SN-on s {b} unfolding SN-on-def by auto
with ‹SN s› have False unfolding SN-defs by auto

}
then have ex: ∃ i. (S i, S(Suc i)) /∈ s by auto
then have (S ?i, S(Suc ?i)) /∈ s by (rule LeastI-ex)
with chain have (S ?i, S(Suc ?i)) ∈ r by auto
have ini: ∀ i<?i. (S i, S(Suc i)) ∈ s using not-less-Least by auto
{

fix i assume i < ?i then have (b, S(Suc i)) ∈ s+
proof (induct i)

case 0 then show ?case using ‹(b, S 1) ∈ s› and ‹S 0 = b› by auto
next

case (Suc k)
then have (b, S(Suc k)) ∈ s+ and Suc k < ?i by auto
with ‹∀ i<?i. (S i, S(Suc i)) ∈ s› have (S(Suc k), S(Suc(Suc k))) ∈ s by

fast
with ‹(b, S(Suc k)) ∈ s+› show ?case by auto

qed
}
then have pref : ∀ i<?i. (b, S(Suc i)) ∈ s+ by auto
from ‹(b, S 1) ∈ s› and ‹S 0 = b› have (S 0 , S(Suc 0)) ∈ s by auto
{

assume ?i = 0
from ex have (S ?i, S(Suc ?i)) /∈ s by (rule LeastI-ex)
with ‹(S 0 , S(Suc 0)) ∈ s› have False unfolding ‹?i = 0 › by simp

}
then have 0 < ?i by auto

46

then obtain j where ?i = Suc j unfolding gr0-conv-Suc by best
with ini have (S(?i−Suc 0), S(Suc(?i−Suc 0))) ∈ s by auto
with pref have (b, S(Suc j)) ∈ s+ unfolding ‹?i = Suc j› by auto
then have (b, S ?i) ∈ s+ unfolding ‹?i = Suc j› by auto
with ‹(S ?i, S(Suc ?i)) ∈ r› have (b, S(Suc ?i)) ∈ (s+ O r) by auto
with ‹quasi-commute r (s+)› have (b, S(Suc ?i)) ∈ r O (r ∪ s+)∗

unfolding quasi-commute-def by auto
then obtain c where (b, c) ∈ r and (c, S(Suc ?i)) ∈ (r ∪ s+)∗ by best
from ‹(b, c) ∈ r› have (b, c) ∈ (r ∪ s)∗ by auto
from chain-imp-not-SN-on [of S r ∪ s]

and chain have ¬ SN-on (r ∪ s) {S (Suc ?i)} by auto
from ‹(c, S(Suc ?i)) ∈ (r ∪ s+)∗› have (c, S(Suc ?i)) ∈ (r ∪ s)∗

unfolding rtrancl-union-subset-rtrancl-union-trancl by auto
with steps-reflect-SN-on [of r ∪ s]

and ‹¬ SN-on (r ∪ s) {S(Suc ?i)}› have ¬ SN-on (r ∪ s) {c} by auto
then have c ∈ ?B by simp
with ‹(b, c) ∈ r› and min have False by auto

}
then show ?thesis by auto

qed

2.5 Strong Normalization
lemma non-strict-into-strict:

assumes compat: NS O S ⊆ S
and steps: (s, t) ∈ (NS∗) O S

shows (s, t) ∈ S
using steps proof

fix x u z
assume (s, t) = (x, z) and (x, u) ∈ NS∗ and (u, z) ∈ S
then have (s, u) ∈ NS∗ and (u, t) ∈ S by auto
then show ?thesis
proof (induct rule:rtrancl.induct)

case (rtrancl-refl x) then show ?case .
next

case (rtrancl-into-rtrancl a b c)
with compat show ?case by auto

qed
qed

lemma comp-trancl:
assumes R O S ⊆ S shows R O S+ ⊆ S+

proof (rule subrelI)
fix w z assume (w, z) ∈ R O S+

then obtain x where R-step: (w, x) ∈ R and S-seq: (x, z) ∈ S+ by best
from tranclD [OF S-seq] obtain y where S-step: (x, y) ∈ S and S-seq ′: (y, z)
∈ S∗ by auto

from R-step and S-step have (w, y) ∈ R O S by auto
with assms have (w, y) ∈ S by auto

47

with S-seq ′ show (w, z) ∈ S+ by simp
qed

lemma comp-rtrancl-trancl:
assumes comp: R O S ⊆ S

and seq: (s, t) ∈ (R ∪ S)∗ O S
shows (s, t) ∈ S+

using seq proof
fix x u z
assume (s, t) = (x, z) and (x, u) ∈ (R ∪ S)∗ and (u, z) ∈ S
then have (s, u) ∈ (R ∪ S)∗ and (u, t) ∈ S+ by auto
then show ?thesis
proof (induct rule: rtrancl.induct)

case (rtrancl-refl x) then show ?case .
next

case (rtrancl-into-rtrancl a b c)
then have (b, c) ∈ R ∪ S by simp
then show ?case
proof

assume (b, c) ∈ S
with rtrancl-into-rtrancl
have (b, t) ∈ S+ by simp
with rtrancl-into-rtrancl show ?thesis by simp

next
assume (b, c) ∈ R
with comp-trancl [OF comp] rtrancl-into-rtrancl
show ?thesis by auto

qed
qed

qed

lemma trancl-union-right: r+ ⊆ (s ∪ r)+
proof (rule subrelI)

fix x y assume (x, y) ∈ r+ then show (x, y) ∈ (s ∪ r)+
proof (induct)

case base then show ?case by auto
next

case (step a b)
then have (a, b) ∈ (s ∪ r)+ by auto
with ‹(x, a) ∈ (s ∪ r)+› show ?case by auto

qed
qed

lemma restrict-SN-subset: restrict-SN R S ⊆ R
proof (rule subrelI)

fix a b assume (a, b) ∈ restrict-SN R S then show (a, b) ∈ R unfolding
restrict-SN-def by simp
qed

48

lemma chain-Un-SN-on-imp-first-step:
assumes chain (R ∪ S) t and SN-on S {t 0}
shows ∃ i. (t i, t (Suc i)) ∈ R ∧ (∀ j<i. (t j, t (Suc j)) ∈ S ∧ (t j, t (Suc j)) /∈

R)
proof −

from ‹SN-on S {t 0}› obtain i where (t i, t (Suc i)) /∈ S by blast
with assms have (t i, t (Suc i)) ∈ R (is ?P i) by auto
let ?i = Least ?P
from ‹?P i› have ?P ?i by (rule LeastI)
have ∀ j<?i. (t j, t (Suc j)) /∈ R using not-less-Least by auto
moreover with assms have ∀ j<?i. (t j, t (Suc j)) ∈ S by best
ultimately have ∀ j<?i. (t j, t (Suc j)) ∈ S ∧ (t j, t (Suc j)) /∈ R by best
with ‹?P ?i› show ?thesis by best

qed

lemma first-step:
assumes C : C = A ∪ B and steps: (x, y) ∈ C ∗ and Bstep: (y, z) ∈ B
shows ∃ y. (x, y) ∈ A∗ O B
using steps

proof (induct rule: converse-rtrancl-induct)
case base
show ?case using Bstep by auto

next
case (step u x)
from step(1)[unfolded C]
show ?case
proof

assume (u, x) ∈ B
then show ?thesis by auto

next
assume ux: (u, x) ∈ A
from step(3) obtain y where (x, y) ∈ A∗ O B by auto
then obtain z where (x, z) ∈ A∗ and step: (z, y) ∈ B by auto
with ux have (u, z) ∈ A∗ by auto
with step have (u, y) ∈ A∗ O B by auto
then show ?thesis by auto

qed
qed

lemma first-step-O:
assumes C : C = A ∪ B and steps: (x, y) ∈ C ∗ O B
shows ∃ y. (x, y) ∈ A∗ O B

proof −
from steps obtain z where (x, z) ∈ C ∗ and (z, y) ∈ B by auto
from first-step [OF C this] show ?thesis .

qed

lemma firstStep:
assumes LSR: L = S ∪ R and xyL: (x, y) ∈ L∗

49

shows (x, y) ∈ R∗ ∨ (x, y) ∈ R∗ O S O L∗

proof (cases (x, y) ∈ R∗)
case True
then show ?thesis by simp

next
case False
let ?SR = S ∪ R
from xyL and LSR have (x, y) ∈ ?SR∗ by simp
from this and False have (x, y) ∈ R∗ O S O ?SR∗

proof (induct rule: rtrancl-induct)
case base then show ?case by simp

next
case (step y z)
then show ?case
proof (cases (x, y) ∈ R∗)

case False with step have (x, y) ∈ R∗ O S O ?SR∗ by simp
from this obtain u where xu: (x, u) ∈ R∗ O S and uy: (u, y) ∈ ?SR∗ by

force
from ‹(y, z) ∈ ?SR› have (y, z) ∈ ?SR∗ by auto
with uy have (u, z) ∈ ?SR∗ by (rule rtrancl-trans)
with xu show ?thesis by auto

next
case True
have (y, z) ∈ S
proof (rule ccontr)

assume (y, z) /∈ S with ‹(y, z) ∈ ?SR› have (y, z) ∈ R by auto
with True have (x, z) ∈ R∗ by auto
with ‹(x, z) /∈ R∗› show False ..

qed
with True show ?thesis by auto

qed
qed
with LSR show ?thesis by simp

qed

lemma non-strict-ending:
assumes chain: chain (R ∪ S) t

and comp: R O S ⊆ S
and SN : SN-on S {t 0}

shows ∃ j. ∀ i≥j. (t i, t (Suc i)) ∈ R − S
proof (rule ccontr)

assume ¬ ?thesis
with chain have ∀ i. ∃ j. j ≥ i ∧ (t j, t (Suc j)) ∈ S by blast
from choice [OF this] obtain f where S-steps: ∀ i. i ≤ f i ∧ (t (f i), t (Suc (f

i))) ∈ S ..
let ?t = λi. t (((Suc ◦ f) ^^ i) 0)
have S-chain: ∀ i. (t i, t (Suc (f i))) ∈ S+

proof

50

fix i
from S-steps have leq: i≤f i and step: (t(f i), t(Suc(f i))) ∈ S by auto
from chain-imp-rtrancl [OF chain leq] have (t i, t(f i)) ∈ (R ∪ S)∗ .
with step have (t i, t(Suc(f i))) ∈ (R ∪ S)∗ O S by auto
from comp-rtrancl-trancl [OF comp this] show (t i, t(Suc(f i))) ∈ S+ .

qed
then have chain (S+) ?tby simp
moreover have SN-on (S+) {?t 0} using SN-on-trancl [OF SN] by simp
ultimately show False unfolding SN-defs by best

qed

lemma SN-on-subset1 :
assumes SN-on r A and s ⊆ r
shows SN-on s A
using assms unfolding SN-defs by blast

lemmas SN-on-mono = SN-on-subset1

lemma rtrancl-fun-conv:
((s, t) ∈ R∗) = (∃ f n. f 0 = s ∧ f n = t ∧ (∀ i < n. (f i, f (Suc i)) ∈ R))
unfolding rtrancl-is-UN-relpow using relpow-fun-conv [where R = R]
by auto

lemma compat-tr-compat:
assumes NS O S ⊆ S shows NS∗ O S ⊆ S
using non-strict-into-strict [where S = S and NS = NS] assms by blast

lemma right-comp-S [simp]:
assumes (x, y) ∈ S O (S O S∗ O NS∗ ∪ NS∗)
shows (x, y) ∈ (S O S∗ O NS∗)

proof−
from assms have (x, y) ∈ (S O S O S∗ O NS∗) ∪ (S O NS∗) by auto
then have xy:(x, y) ∈ (S O (S O S∗) O NS∗) ∪ (S O NS∗) by auto
have S O S∗ ⊆ S∗ by auto
with xy have (x, y) ∈ (S O S∗ O NS∗) ∪ (S O NS∗) by auto
then show (x, y) ∈ (S O S∗ O NS∗) by auto

qed

lemma compatible-SN :
assumes SN : SN S
and compat: NS O S ⊆ S
shows SN (S O S∗ O NS∗) (is SN ?A)

proof
fix F assume chain: chain ?A F
from compat compat-tr-compat have tr-compat: NS∗ O S ⊆ S by blast
have ∀ i. (∃ y z. (F i, y) ∈ S ∧ (y, z) ∈ S∗ ∧ (z, F (Suc i)) ∈ NS∗)
proof

fix i
from chain have (F i, F (Suc i)) ∈ (S O S∗ O NS∗) by auto

51

then show ∃ y z . (F i, y) ∈ S ∧ (y, z) ∈ S∗ ∧ (z, F (Suc i)) ∈ NS∗

unfolding relcomp-def using mem-Collect-eq by auto
qed
then have ∃ f . (∀ i. (∃ z. (F i, f i) ∈ S ∧ ((f i, z) ∈ S∗) ∧(z, F (Suc i)) ∈

NS∗))
by (rule choice)

then obtain f
where ∀ i. (∃ z. (F i, f i) ∈ S ∧ ((f i, z) ∈ S∗) ∧(z, F (Suc i)) ∈ NS∗) ..

then have ∃ g. ∀ i. (F i, f i) ∈ S ∧ (f i, g i) ∈ S∗ ∧ (g i, F (Suc i)) ∈ NS∗

by (rule choice)
then obtain g where ∀ i. (F i, f i) ∈ S ∧ (f i, g i) ∈ S∗ ∧ (g i, F (Suc i))
∈ NS∗ ..

then have ∀ i. (f i, g i) ∈ S∗ ∧ (g i, F (Suc i)) ∈ NS∗ ∧ (F (Suc i), f (Suc
i)) ∈ S

by auto
then have ∀ i. (f i, g i) ∈ S∗ ∧ (g i, f (Suc i)) ∈ S unfolding relcomp-def

using tr-compat by auto
then have all:∀ i. (f i, g i) ∈ S∗ ∧ (g i, f (Suc i)) ∈ S+ by auto
have ∀ i. (f i, f (Suc i)) ∈ S+

proof
fix i
from all have (f i, g i) ∈ S∗ ∧ (g i, f (Suc i)) ∈ S+ ..
then show (f i, f (Suc i)) ∈ S+ using transitive-closure-trans by auto

qed
then have ∃ x. f 0 = x ∧ chain (S+) f by auto
then obtain x where f 0 = x ∧ chain (S+) f by auto
then have ∃ f . f 0 = x ∧ chain (S+) f by auto
then have ¬ SN-on (S+) {x} by auto
then have ¬ SN (S+) unfolding SN-defs by auto
then have wfSconv:¬ wf ((S+)−1) using SN-iff-wf by auto
from SN have wf (S−1) using SN-imp-wf [where?r=S] by simp
with wf-converse-trancl wfSconv show False by auto

qed

lemma compatible-rtrancl-split:
assumes compat: NS O S ⊆ S
and steps: (x, y) ∈ (NS ∪ S)∗

shows (x, y) ∈ S O S∗ O NS∗ ∪ NS∗

proof−
from steps have ∃ n. (x, y) ∈ (NS ∪ S)^^n using rtrancl-imp-relpow [where

?R=NS ∪ S] by auto
then obtain n where (x, y) ∈ (NS ∪ S)^^n by auto
then show (x, y) ∈ S O S∗ O NS∗ ∪ NS∗

proof (induct n arbitrary: x, simp)
case (Suc m)
assume (x, y) ∈ (NS ∪ S)^^(Suc m)
then have ∃ z. (x, z) ∈ (NS ∪ S) ∧ (z, y) ∈ (NS ∪ S)^^m

using relpow-Suc-D2 [where ?R=NS ∪ S] by auto
then obtain z where xz:(x, z) ∈ (NS ∪ S) and zy:(z, y) ∈ (NS ∪ S)^^m by

52

auto
with Suc have zy:(z, y) ∈ S O S∗ O NS∗ ∪ NS∗ by auto
then show (x, y) ∈ S O S∗ O NS∗ ∪ NS∗

proof (cases (x, z) ∈ NS)
case True
from compat compat-tr-compat have trCompat: NS∗ O S ⊆ S by blast
from zy True have (x, y) ∈ (NS O S O S∗ O NS∗) ∪ (NS O NS∗) by auto
then have (x, y) ∈ ((NS O S) O S∗ O NS∗) ∪ (NS O NS∗) by auto
then have (x, y) ∈ ((NS∗ O S) O S∗ O NS∗) ∪ (NS O NS∗) by auto
with trCompat have xy:(x, y) ∈ (S O S∗ O NS∗) ∪ (NS O NS∗) by auto
have NS O NS∗ ⊆ NS∗ by auto
with xy show (x, y) ∈ (S O S∗ O NS∗) ∪ NS∗ by auto

next
case False
with xz have xz:(x, z) ∈ S by auto
with zy have (x, y) ∈ S O (S O S∗ O NS∗ ∪ NS∗) by auto
then show (x, y) ∈ (S O S∗ O NS∗) ∪ NS∗ using right-comp-S by simp

qed
qed

qed

lemma compatible-conv:
assumes compat: NS O S ⊆ S
shows (NS ∪ S)∗ O S O (NS ∪ S)∗ = S O S∗ O NS∗

proof −
let ?NSuS = NS ∪ S
let ?NSS = S O S∗ O NS∗

let ?midS = ?NSuS∗ O S O ?NSuS∗

have one: ?NSS ⊆ ?midS by regexp
have ?NSuS∗ O S ⊆ (?NSS ∪ NS∗) O S

using compatible-rtrancl-split [where S = S and NS = NS] compat by blast
also have . . . ⊆ ?NSS O S ∪ NS∗ O S by auto
also have . . . ⊆ ?NSS O S ∪ S using compat compat-tr-compat [where S = S

and NS = NS] by auto
also have . . . ⊆ S O ?NSuS∗ by regexp
finally have ?midS ⊆ S O ?NSuS∗ O ?NSuS∗ by blast
also have . . . ⊆ S O ?NSuS∗ by regexp
also have . . . ⊆ S O (?NSS ∪ NS∗)

using compatible-rtrancl-split [where S = S and NS = NS] compat by blast
also have . . . ⊆ ?NSS by regexp
finally have two: ?midS ⊆ ?NSS .
from one two show ?thesis by auto

qed

lemma compatible-SN ′:
assumes compat: NS O S ⊆ S and SN : SN S
shows SN ((NS ∪ S)∗ O S O (NS ∪ S)∗)

using compatible-conv [where S = S and NS = NS]
compatible-SN [where S = S and NS = NS] assms by force

53

lemma rtrancl-diff-decomp:
assumes (x, y) ∈ A∗ − B∗

shows (x, y) ∈ A∗ O (A − B) O A∗

proof−
from assms have A: (x, y) ∈ A∗ and B:(x, y) /∈ B∗ by auto
from A have ∃ k. (x, y) ∈ A^^k by (rule rtrancl-imp-relpow)
then obtain k where Ak:(x, y) ∈ A^^k by auto
from Ak B show (x, y) ∈ A∗ O (A − B) O A∗

proof (induct k arbitrary: x)
case 0
with ‹(x, y) /∈ B∗› 0 show ?case using ccontr by auto

next
case (Suc i)
then have B:(x, y) /∈ B∗ and ASk:(x, y) ∈ A ^^ Suc i by auto
from ASk have ∃ z. (x, z) ∈ A ∧ (z, y) ∈ A ^^ i using relpow-Suc-D2 [where

?R=A] by auto
then obtain z where xz:(x, z) ∈ A and (z, y) ∈ A ^^ i by auto
then have zy:(z, y) ∈ A∗ using relpow-imp-rtrancl by auto
from xz show (x, y) ∈ A∗ O (A − B) O A∗

proof (cases (x, z) ∈ B)
case False
with xz zy show (x, y) ∈ A∗ O (A − B) O A∗ by auto

next
case True
then have (x, z) ∈ B∗ by auto
have [[(x, z) ∈ B∗; (z, y) ∈ B∗]] =⇒ (x, y) ∈ B∗ using rtrancl-trans [of x z

B] by auto
with ‹(x, z) ∈ B∗› ‹(x, y) /∈ B∗› have (z, y) /∈ B∗ by auto
with Suc ‹(z, y) ∈ A ^^ i› have (z, y) ∈ A∗ O (A − B) O A∗ by auto
with xz have xy:(x, y) ∈ A O A∗ O (A − B) O A∗ by auto
have A O A∗ O (A − B) O A∗ ⊆ A∗ O (A − B) O A∗ by regexp
from this xy show (x, y) ∈ A∗ O (A − B) O A∗

using subsetD [where ?A=A O A∗ O (A − B) O A∗] by auto
qed

qed
qed

lemma SN-empty [simp]: SN {} by auto

lemma SN-on-weakening:
assumes SN-on R1 A
shows SN-on (R1 ∩ R2) A

proof −
{

assume ∃S . S 0 ∈ A ∧ chain (R1 ∩ R2) S
then obtain S where

S0 : S 0 ∈ A and
SN : chain (R1 ∩ R2) S

54

by auto
from SN have SN ′: chain R1 S by simp
with S0 and assms have False by auto

}
then show ?thesis by force

qed

definition ideriv :: ′a rel ⇒ ′a rel ⇒ (nat ⇒ ′a) ⇒ bool where
ideriv R S as ←→ (∀ i. (as i, as (Suc i)) ∈ R ∪ S) ∧ (INFM i. (as i, as (Suc i))
∈ R)

lemma ideriv-mono: R ⊆ R ′ =⇒ S ⊆ S ′ =⇒ ideriv R S as =⇒ ideriv R ′ S ′ as
unfolding ideriv-def INFM-nat by blast

fun
shift :: (nat ⇒ ′a) ⇒ nat ⇒ nat ⇒ ′a

where
shift f j = (λ i. f (i+j))

lemma ideriv-split:
assumes ideriv: ideriv R S as

and nideriv: ¬ ideriv (D ∩ (R ∪ S)) (R ∪ S − D) as
shows ∃ i. ideriv (R − D) (S − D) (shift as i)

proof −
have RS : R − D ∪ (S − D) = R ∪ S − D by auto
from ideriv [unfolded ideriv-def]
have as:

∧
i. (as i, as (Suc i)) ∈ R ∪ S

and inf : INFM i. (as i, as (Suc i)) ∈ R by auto
show ?thesis
proof (cases INFM i. (as i, as (Suc i)) ∈ D ∩ (R ∪ S))

case True
have ideriv (D ∩ (R ∪ S)) (R ∪ S − D) as

unfolding ideriv-def
using as True by auto

with nideriv show ?thesis ..
next

case False
from False [unfolded INFM-nat]
obtain i where Dn:

∧
j. i < j =⇒ (as j, as (Suc j)) /∈ D ∩ (R ∪ S)

by auto
from Dn as have as:

∧
j. i < j =⇒ (as j, as (Suc j)) ∈ R ∪ S − D by auto

show ?thesis
proof (rule exI [of - Suc i], unfold ideriv-def RS , insert as, intro conjI , simp,

unfold INFM-nat, intro allI)
fix m
from inf [unfolded INFM-nat] obtain j where j: j > Suc i + m

and R: (as j, as (Suc j)) ∈ R by auto
with as [of j] have RD: (as j, as (Suc j)) ∈ R − D by auto

55

show ∃ j > m. (shift as (Suc i) j, shift as (Suc i) (Suc j)) ∈ R − D
by (rule exI [of - j − Suc i], insert j RD, auto)

qed
qed

qed

lemma ideriv-SN :
assumes SN : SN S

and compat: NS O S ⊆ S
and R: R ⊆ NS ∪ S

shows ¬ ideriv (S ∩ R) (R − S) as
proof

assume ideriv (S ∩ R) (R − S) as
with R have steps: ∀ i. (as i, as (Suc i)) ∈ NS ∪ S

and inf : INFM i. (as i, as (Suc i)) ∈ S ∩ R unfolding ideriv-def by auto
from non-strict-ending [OF steps compat] SN
obtain i where i:

∧
j. j ≥ i =⇒ (as j, as (Suc j)) ∈ NS − S by fast

from inf [unfolded INFM-nat] obtain j where j > i and (as j, as (Suc j)) ∈ S
by auto

with i [of j] show False by auto
qed

lemma Infm-shift: (INFM i. P (shift f n i)) = (INFM i. P (f i)) (is ?S = ?O)
proof

assume ?S
show ?O

unfolding INFM-nat-le
proof

fix m
from ‹?S› [unfolded INFM-nat-le]
obtain k where k: k ≥ m and p: P (shift f n k) by auto
show ∃ k ≥ m. P (f k)

by (rule exI [of - k + n], insert k p, auto)
qed

next
assume ?O
show ?S

unfolding INFM-nat-le
proof

fix m
from ‹?O› [unfolded INFM-nat-le]
obtain k where k: k ≥ m + n and p: P (f k) by auto
show ∃ k ≥ m. P (shift f n k)

by (rule exI [of - k − n], insert k p, auto)
qed

qed

lemma rtrancl-list-conv:
(s, t) ∈ R∗ ←→

56

(∃ ts. last (s # ts) = t ∧ (∀ i<length ts. ((s # ts) ! i, (s # ts) ! Suc i) ∈ R))
(is ?l = ?r)
proof

assume ?r
then obtain ts where last (s # ts) = t ∧ (∀ i<length ts. ((s # ts) ! i, (s # ts)

! Suc i) ∈ R) ..
then show ?l
proof (induct ts arbitrary: s, simp)

case (Cons u ll)
then have last (u # ll) = t ∧ (∀ i<length ll. ((u # ll) ! i, (u # ll) ! Suc i) ∈

R) by auto
from Cons(1)[OF this] have rec: (u, t) ∈ R∗ .
from Cons have (s, u) ∈ R by auto
with rec show ?case by auto

qed
next

assume ?l
from rtrancl-imp-seq [OF this]
obtain S n where s: S 0 = s and t: S n = t and steps: ∀ i<n. (S i, S (Suc

i)) ∈ R by auto
let ?ts = map (λ i. S (Suc i)) [0 ..< n]
show ?r
proof (rule exI [of - ?ts], intro conjI ,

cases n, simp add: s [symmetric] t [symmetric], simp add: t [symmetric])
show ∀ i < length ?ts. ((s # ?ts) ! i, (s # ?ts) ! Suc i) ∈ R
proof (intro allI impI)

fix i
assume i: i < length ?ts
then show ((s # ?ts) ! i, (s # ?ts) ! Suc i) ∈ R
proof (cases i, simp add: s [symmetric] steps)

case (Suc j)
with i steps show ?thesis by simp

qed
qed

qed
qed

lemma SN-reaches-NF :
assumes SN-on r {x}
shows ∃ y. (x, y) ∈ r∗ ∧ y ∈ NF r

using assms
proof (induct rule: SN-on-induct ′)

case (IH x)
show ?case
proof (cases x ∈ NF r)

case True
then show ?thesis by auto

next
case False

57

then obtain y where step: (x, y) ∈ r by auto
from IH [OF this] obtain z where steps: (y, z) ∈ r∗ and NF : z ∈ NF r by

auto
show ?thesis

by (intro exI , rule conjI [OF - NF], insert step steps, auto)
qed

qed

lemma SN-WCR-reaches-NF :
assumes SN : SN-on r {x}

and WCR: WCR-on r {x. SN-on r {x}}
shows ∃ ! y. (x, y) ∈ r∗ ∧ y ∈ NF r

proof −
from SN-reaches-NF [OF SN] obtain y where steps: (x, y) ∈ r∗ and NF : y ∈

NF r by auto
show ?thesis
proof(rule, rule conjI [OF steps NF])

fix z
assume steps ′: (x, z) ∈ r∗ ∧ z ∈ NF r
from Newman-local [OF SN WCR] have CR-on r {x} by auto
from CR-onD [OF this - steps] steps ′ have (y, z) ∈ r↓ by simp
from join-NF-imp-eq [OF this NF] steps ′ show z = y by simp

qed
qed

definition some-NF :: ′a rel ⇒ ′a ⇒ ′a where
some-NF r x = (SOME y. (x, y) ∈ r∗ ∧ y ∈ NF r)

lemma some-NF :
assumes SN : SN-on r {x}
shows (x, some-NF r x) ∈ r∗ ∧ some-NF r x ∈ NF r
using someI-ex [OF SN-reaches-NF [OF SN]]
unfolding some-NF-def .

lemma some-NF-WCR:
assumes SN : SN-on r {x}

and WCR: WCR-on r {x. SN-on r {x}}
and steps: (x, y) ∈ r∗

and NF : y ∈ NF r
shows y = some-NF r x

proof −
let ?p = λ y. (x, y) ∈ r∗ ∧ y ∈ NF r
from SN-WCR-reaches-NF [OF SN WCR]
have one: ∃ ! y. ?p y .
from steps NF have y: ?p y ..
from some-NF [OF SN] have some: ?p (some-NF r x) .
from one some y show ?thesis by auto

qed

58

lemma some-NF-UNF :
assumes UNF : UNF r

and steps: (x, y) ∈ r∗

and NF : y ∈ NF r
shows y = some-NF r x

proof −
let ?p = λ y. (x, y) ∈ r∗ ∧ y ∈ NF r
from steps NF have py: ?p y by simp
then have pNF : ?p (some-NF r x) unfolding some-NF-def

by (rule someI)
from py have y: (x, y) ∈ r ! by auto
from pNF have nf : (x, some-NF r x) ∈ r ! by auto
from UNF [unfolded UNF-on-def] y nf show ?thesis by auto

qed

definition the-NF A a = (THE b. (a, b) ∈ A!)

context
fixes A
assumes SN : SN A and CR: CR A

begin
lemma the-NF : (a, the-NF A a) ∈ A!

proof −
obtain b where ab: (a, b) ∈ A! using SN by (meson SN-imp-WN UNIV-I

WN-onE)
moreover have (a, c) ∈ A! =⇒ c = b for c

using CR and ab by (meson CR-divergence-imp-join join-NF-imp-eq normal-
izability-E)

ultimately have ∃ !b. (a, b) ∈ A! by blast
then show ?thesis unfolding the-NF-def by (rule theI ′)

qed

lemma the-NF-NF : the-NF A a ∈ NF A
using the-NF by (auto simp: normalizability-def)

lemma the-NF-step:
assumes (a, b) ∈ A
shows the-NF A a = the-NF A b
using the-NF and assms
by (meson CR SN SN-imp-WN conversionI ′ r-into-rtrancl semi-complete-imp-conversionIff-same-NF

semi-complete-onI)

lemma the-NF-steps:
assumes (a, b) ∈ A∗

shows the-NF A a = the-NF A b
using assms by (induct) (auto dest: the-NF-step)

lemma the-NF-conv:
assumes (a, b) ∈ A↔∗

59

shows the-NF A a = the-NF A b
using assms
by (meson CR WN-on-def the-NF semi-complete-imp-conversionIff-same-NF semi-complete-onI)

end

definition weak-diamond :: ′a rel ⇒ bool (‹w♦›) where
w♦ r ←→ (r−1 O r) − Id ⊆ (r O r−1)

lemma weak-diamond-imp-CR:
assumes wd: w♦ r
shows CR r

proof (rule semi-confluence-imp-CR, rule)
fix x y
assume (x, y) ∈ r−1 O r∗

then obtain z where step: (z, x) ∈ r and steps: (z, y) ∈ r∗ by auto
from steps
have ∃ u. (x, u) ∈ r∗ ∧ (y, u) ∈ r=

proof (induct)
case base
show ?case

by (rule exI [of - x], insert step, auto)
next

case (step y ′ y)
from step(3) obtain u where xu: (x, u) ∈ r∗ and y ′u: (y ′, u) ∈ r= by auto
from y ′u have (y ′, u) ∈ r ∨ y ′ = u by auto
then show ?case
proof

assume y ′u: y ′ = u
with xu step(2) have xy: (x, y) ∈ r∗ by auto
show ?thesis

by (intro exI conjI , rule xy, simp)
next

assume (y ′, u) ∈ r
with step(2) have uy: (u, y) ∈ r−1 O r by auto
show ?thesis
proof (cases u = y)

case True
show ?thesis

by (intro exI conjI , rule xu, unfold True, simp)
next

case False
with uy

wd [unfolded weak-diamond-def] obtain u ′ where uu ′: (u, u ′) ∈ r
and yu ′: (y, u ′) ∈ r by auto

from xu uu ′ have xu: (x, u ′) ∈ r∗ by auto
show ?thesis

by (intro exI conjI , rule xu, insert yu ′, auto)

60

qed
qed

qed
then show (x, y) ∈ r↓ by auto

qed

lemma steps-imp-not-SN-on:
fixes t :: ′a ⇒ ′b

and R :: ′b rel
assumes steps:

∧
x. (t x, t (f x)) ∈ R

shows ¬ SN-on R {t x}
proof

let ?U = range t
assume SN-on R {t x}
from SN-on-imp-on-minimal [OF this, rule-format, of ?U]
obtain tz where tz: tz ∈ range t and min:

∧
y. (tz, y) ∈ R =⇒ y /∈ range t

by auto
from tz obtain z where tz: tz = t z by auto
from steps [of z] min [of t (f z)] show False unfolding tz by auto

qed

lemma steps-imp-not-SN :
fixes t :: ′a ⇒ ′b

and R :: ′b rel
assumes steps:

∧
x. (t x, t (f x)) ∈ R

shows ¬ SN R
proof −

from steps-imp-not-SN-on [of t f R, OF steps]
show ?thesis unfolding SN-def by blast

qed

lemma steps-map:
assumes fg:

∧
t u R . P t =⇒ Q R =⇒ (t, u) ∈ R =⇒ P u ∧ (f t, f u) ∈ g R

and t: P t
and R: Q R
and S : Q S
shows ((t, u) ∈ R∗ −→ (f t, f u) ∈ (g R)∗)
∧ ((t, u) ∈ R∗ O S O R∗ −→ (f t, f u) ∈ (g R)∗ O (g S) O (g R)∗)

proof −
{

fix t u
assume (t, u) ∈ R∗ and P t
then have P u ∧ (f t, f u) ∈ (g R)∗

proof (induct)
case (step u v)
from step(3)[OF step(4)] have Pu: P u and steps: (f t, f u) ∈ (g R)∗ by

auto
from fg [OF Pu R step(2)] have Pv: P v and step: (f u, f v) ∈ g R by auto
with steps have (f t, f v) ∈ (g R)∗ by auto

61

with Pv show ?case by simp
qed simp

} note main = this
note maint = main [OF - t]
from maint [of u] have one: (t, u) ∈ R∗ −→ (f t, f u) ∈ (g R)∗ by simp
show ?thesis
proof (rule conjI [OF one impI])

assume (t, u) ∈ R∗ O S O R∗

then obtain s v where ts: (t, s) ∈ R∗ and sv: (s, v) ∈ S and vu: (v, u) ∈
R∗ by auto

from maint [OF ts] have Ps: P s and ts: (f t, f s) ∈ (g R)∗ by auto
from fg [OF Ps S sv] have Pv: P v and sv: (f s, f v) ∈ g S by auto
from main [OF vu Pv] have vu: (f v, f u) ∈ (g R)∗ by auto
from ts sv vu show (f t, f u) ∈ (g R)∗ O g S O (g R)∗ by auto

qed
qed

2.6 Terminating part of a relation
inductive-set

SN-part :: ′a rel ⇒ ′a set
for r :: ′a rel

where
SN-partI : (

∧
y. (x, y) ∈ r =⇒ y ∈ SN-part r) =⇒ x ∈ SN-part r

The accessible part of a relation is the same as the terminating part (just
two names for the same definition – modulo argument order). See (

∧
y. (y,

?x) ∈ ?r =⇒ y ∈ Wellfounded.acc ?r) =⇒ ?x ∈ Wellfounded.acc ?r.

Characterization of SN-on via terminating part.
lemma SN-on-SN-part-conv:

SN-on r A ←→ A ⊆ SN-part r
proof −

{
fix x assume SN-on r A and x ∈ A
then have x ∈ SN-part r by (induct) (auto intro: SN-partI)

} moreover {
fix x assume x ∈ A and A ⊆ SN-part r
then have x ∈ SN-part r by auto
then have SN-on r {x} by (induct) (auto intro: step-reflects-SN-on)

} ultimately show ?thesis by (force simp: SN-defs)
qed

Special case for “full” termination.
lemma SN-SN-part-UNIV-conv:

SN r ←→ SN-part r = UNIV
using SN-on-SN-part-conv [of r UNIV] by auto

lemma closed-imp-rtrancl-closed: assumes L: L ⊆ A
and R: R ‘‘ A ⊆ A

62

shows {t | s. s ∈ L ∧ (s,t) ∈ R^∗} ⊆ A
proof −

{
fix s t
assume (s,t) ∈ R^∗ and s ∈ L
hence t ∈ A

by (induct, insert L R, auto)
}
thus ?thesis by auto

qed

lemma trancl-steps-relpow: assumes a ⊆ b^+
shows (x,y) ∈ a^^n =⇒ ∃ m. m ≥ n ∧ (x,y) ∈ b^^m

proof (induct n arbitrary: y)
case 0 thus ?case by (intro exI [of - 0], auto)

next
case (Suc n z)
from Suc(2) obtain y where xy: (x,y) ∈ a ^^ n and yz: (y,z) ∈ a by auto
from Suc(1)[OF xy] obtain m where m: m ≥ n and xy: (x,y) ∈ b ^^ m by

auto
from yz assms have (y,z) ∈ b^+ by auto
from this[unfolded trancl-power] obtain k where k: k > 0 and yz: (y,z) ∈ b ^^

k by auto
from xy yz have (x,z) ∈ b ^^ (m + k) unfolding relpow-add by auto
with k m show ?case by (intro exI [of - m + k], auto)

qed

lemma relpow-image: assumes f :
∧

s t. (s,t) ∈ r =⇒ (f s, f t) ∈ r ′

shows (s,t) ∈ r ^^ n =⇒ (f s, f t) ∈ r ′ ^^ n
proof (induct n arbitrary: t)

case (Suc n u)
from Suc(2) obtain t where st: (s,t) ∈ r ^^ n and tu: (t,u) ∈ r by auto
from Suc(1)[OF st] f [OF tu] show ?case by auto

qed auto

lemma relpow-refl-mono:
assumes refl:

∧
x. (x,x) ∈ Rel

shows m ≤ n =⇒(a,b) ∈ Rel ^^ m =⇒ (a,b) ∈ Rel ^^ n
proof (induct rule:dec-induct)

case (step i)
hence abi:(a, b) ∈ Rel ^^ i by auto
from refl[of b] abi relpowp-Suc-I [of i λ x y. (x,y) ∈ Rel] show (a, b) ∈ Rel ^^

Suc i by auto
qed

lemma SN-on-induct-acc-style [consumes 1 , case-names IH]:
assumes sn: SN-on R {a}

and IH :
∧

x. SN-on R {x} =⇒ [[
∧

y. (x, y) ∈ R =⇒ P y]] =⇒ P x
shows P a

63

proof −
from sn SN-on-conv-acc [of R−1 a] have a: a ∈ termi R by auto
show ?thesis
proof (rule Wellfounded.acc.induct [OF a, of P], rule IH)

fix x
assume

∧
y. (y, x) ∈ R−1 =⇒ y ∈ termi R

from this [folded SN-on-conv-acc]
show SN-on R {x} by simp fast

qed auto
qed

lemma partially-localize-CR:
CR r ←→ (∀ x y z. (x, y) ∈ r ∧ (x, z) ∈ r∗ −→ (y, z) ∈ join r)

proof
assume CR r
thus ∀ x y z. (x, y) ∈ r ∧ (x, z) ∈ r∗ −→ (y, z) ∈ join r by auto

next
assume 1 :∀ x y z. (x, y) ∈ r ∧ (x, z) ∈ r∗ −→ (y, z) ∈ join r
show CR r
proof

fix a b c
assume 2 : a ∈ UNIV and 3 : (a, b) ∈ r∗ and 4 : (a, c) ∈ r∗

then obtain n where (a,c) ∈ r^^n using rtrancl-is-UN-relpow by fast
with 2 3 show (b,c) ∈ join r
proof (induct n arbitrary: a b c)

case 0 thus ?case by auto
next

case (Suc m)
from Suc(4) obtain d where ad: (a, d) ∈ r^^m and dc: (d, c) ∈ r by auto
from Suc(1) [OF Suc(2) Suc(3) ad] have (b, d) ∈ join r .
with 1 dc joinE joinI [of b - r c] join-rtrancl-join show ?case by metis

qed
qed

qed

definition strongly-confluent-on :: ′a rel ⇒ ′a set ⇒ bool
where

strongly-confluent-on r A ←→
(∀ x ∈ A. ∀ y z. (x, y) ∈ r ∧ (x, z) ∈ r −→ (∃ u. (y, u) ∈ r∗ ∧ (z, u) ∈ r=))

abbreviation strongly-confluent :: ′a rel ⇒ bool
where

strongly-confluent r ≡ strongly-confluent-on r UNIV

lemma strongly-confluent-on-E11 :
strongly-confluent-on r A =⇒ x ∈ A =⇒ (x, y) ∈ r =⇒ (x, z) ∈ r =⇒
∃ u. (y, u) ∈ r∗ ∧ (z, u) ∈ r=

unfolding strongly-confluent-on-def by blast

64

lemma strongly-confluentI [intro]:
[[
∧

x y z . (x, y) ∈ r =⇒ (x, z) ∈ r =⇒ ∃ u. (y, u) ∈ r∗ ∧ (z, u) ∈ r=]] =⇒
strongly-confluent r
unfolding strongly-confluent-on-def by auto

lemma strongly-confluent-E1n:
assumes scr : strongly-confluent r
shows (x, y) ∈ r= =⇒ (x, z) ∈ r ^^ n =⇒ ∃ u. (y, u) ∈ r∗ ∧ (z, u) ∈ r=

proof (induct n arbitrary: x y z)
case (Suc m)
from Suc(3) obtain w where xw: (x, w) ∈ r^^m and wz: (w, z) ∈ r by auto
from Suc(1) [OF Suc(2) xw] obtain u where yu: (y, u) ∈ r∗ and wu: (w, u)
∈ r= by auto

from strongly-confluent-on-E11 [OF scr , of w] wz yu wu show ?case
by (metis UnE converse-rtrancl-into-rtrancl iso-tuple-UNIV-I pair-in-Id-conv

rtrancl-trans)
qed auto

lemma strong-confluence-imp-CR:
assumes strongly-confluent r
shows CR r

proof −
{ fix x y z

have (x, y) ∈ r =⇒ (x, z) ∈ r∗ =⇒ (y, z) ∈ join r
by (cases x = y, insert strongly-confluent-E1n [OF assms], blast+) }

then show CR r using partially-localize-CR by blast
qed

lemma WCR-alt-def : WCR A ←→ A−1 O A ⊆ A↓ by (auto simp: WCR-defs)

lemma NF-imp-SN-on: a ∈ NF R =⇒ SN-on R {a} unfolding SN-on-def NF-def
by blast

lemma Union-sym: (s, t) ∈ (
⋃

i≤n. (S i)↔) ←→ (t, s) ∈ (
⋃

i≤n. (S i)↔) by
auto

lemma peak-iff : (x, y) ∈ A−1 O B ←→ (∃ u. (u, x) ∈ A ∧ (u, y) ∈ B) by auto

lemma CR-NF-conv:
assumes CR r and t ∈ NF r and (u, t) ∈ r↔∗

shows (u, t) ∈ r !

using assms
unfolding CR-imp-conversionIff-join [OF ‹CR r›]
by (auto simp: NF-iff-no-step normalizability-def)

(metis (mono-tags) converse-rtranclE joinE)

lemma NF-join-imp-reach:

65

assumes y ∈ NF A and (x, y) ∈ A↓

shows (x, y) ∈ A∗

using assms by (auto simp: join-def) (metis NF-not-suc rtrancl-converseD)

lemma conversion-O-conversion [simp]:
A↔∗ O A↔∗ = A↔∗

by (force simp: converse-def)

lemma trans-O-iff : trans A ←→ A O A ⊆ A unfolding trans-def by auto
lemma refl-O-iff : refl A ←→ Id ⊆ A unfolding refl-on-def by auto

lemma relpow-Suc: r ^^ Suc n = r O r ^^ n
using relpow-add[of 1 n r] by auto

lemma converse-power : fixes r :: ′a rel shows (r−1)^^n = (r^^n)−1

proof (induct n)
case (Suc n)
show ?case unfolding relpow.simps(2)[of - r−1] relpow-Suc[of - r]

by (simp add: Suc converse-relcomp)
qed simp

lemma conversion-mono: A ⊆ B =⇒ A↔∗ ⊆ B↔∗

by (auto simp: conversion-def intro!: rtrancl-mono)

lemma conversion-conversion-idemp [simp]: (A↔∗)↔∗ = A↔∗

by auto

lemma lower-set-imp-not-SN-on:
assumes s ∈ X ∀ t ∈ X . ∃ u ∈ X . (t,u) ∈ R shows ¬ SN-on R {s}
by (meson SN-on-imp-on-minimal assms)

lemma SN-on-Image-rtrancl-iff [simp]: SN-on R (R∗ ‘‘ X) ←→ SN-on R X (is ?l
= ?r)
proof(intro iffI)

assume ?l show ?r by (rule SN-on-subset2 [OF - ‹?l›], auto)
qed (fact SN-on-Image-rtrancl)

lemma O-mono1 : R ⊆ R ′ =⇒ S O R ⊆ S O R ′ by auto
lemma O-mono2 : R ⊆ R ′ =⇒ R O T ⊆ R ′ O T by auto

lemma rtrancl-O-shift: (S O R)∗ O S = S O (R O S)∗

proof(intro equalityI subrelI)
fix x y
assume (x,y) ∈ (S O R)∗ O S
then obtain n where (x,y) ∈ (S O R)^^n O S by blast
then show (x,y) ∈ S O (R O S)∗
proof(induct n arbitrary: y)

66

case IH : (Suc n)
then obtain z where xz: (x,z) ∈ (S O R)^^n O S and zy: (z,y) ∈ R O S by

auto
from IH .hyps[OF xz] zy have (x,y) ∈ S O (R O S)∗ O R O S by auto
then show ?case by(fold trancl-unfold-right, auto)

qed auto
next

fix x y
assume (x,y) ∈ S O (R O S)∗
then obtain n where (x,y) ∈ S O (R O S)^^n by blast
then show (x,y) ∈ (S O R)∗ O S
proof(induct n arbitrary: y)

case IH : (Suc n)
then obtain z where xz: (x,z) ∈ S O (R O S)^^n and zy: (z,y) ∈ R O S by

auto
from IH .hyps[OF xz] zy have (x,y) ∈ ((S O R)∗ O S O R) O S by auto
from this[folded trancl-unfold-right]
show ?case by (rule rev-subsetD[OF - O-mono2], auto simp: O-assoc)

qed auto
qed

lemma O-rtrancl-O-O: R O (S O R)∗ O S = (R O S)+
by (unfold rtrancl-O-shift trancl-unfold-left, auto)

lemma SN-on-subset-SN-terms:
assumes SN : SN-on R X shows X ⊆ {x. SN-on R {x}}

proof(intro subsetI , unfold mem-Collect-eq)
fix x assume x: x ∈ X
show SN-on R {x} by (rule SN-on-subset2 [OF - SN], insert x, auto)

qed

lemma SN-on-Un2 :
assumes SN-on R X and SN-on R Y shows SN-on R (X ∪ Y)
using assms by fast

lemma SN-on-UN :
assumes

∧
x. SN-on R (X x) shows SN-on R (

⋃
x. X x)

using assms by fast

lemma Image-subsetI : R ⊆ R ′ =⇒ R ‘‘ X ⊆ R ′ ‘‘ X by auto

lemma SN-on-O-comm:
assumes SN : SN-on ((R :: (′a× ′b) set) O (S :: (′b× ′a) set)) (S ‘‘ X)
shows SN-on (S O R) X

proof
fix seq :: nat ⇒ ′b assume seq0 : seq 0 ∈ X and chain: chain (S O R) seq
from SN have SN : SN-on (R O S) ((R O S)∗ ‘‘ S ‘‘ X) by simp
{ fix i a

assume ia: (seq i,a) ∈ S and aSi: (a,seq (Suc i)) ∈ R

67

have seq i ∈ (S O R)∗ ‘‘ X
proof (induct i)

case 0 from seq0 show ?case by auto
next

case (Suc i) with chain have seq (Suc i) ∈ ((S O R)∗ O S O R) ‘‘ X by
blast

also have ... ⊆ (S O R)∗ ‘‘ X by (fold trancl-unfold-right, auto)
finally show ?case.

qed
with ia have a ∈ ((S O R)∗ O S) ‘‘ X by auto
then have a: a ∈ ((R O S)∗) ‘‘ S ‘‘ X by (auto simp: rtrancl-O-shift)
with ia aSi have False
proof(induct a arbitrary: i rule: SN-on-induct[OF SN])

case 1 show ?case by (fact a)
next

case IH : (2 a)
from chain obtain b
where ∗: (seq (Suc i), b) ∈ S (b, seq (Suc (Suc i))) ∈ R by auto
with IH have ab: (a,b) ∈ R O S by auto
with ‹a ∈ (R O S)∗ ‘‘ S ‘‘ X› have b ∈ ((R O S)∗ O R O S) ‘‘ S ‘‘ X by

auto
then have b ∈ (R O S)∗ ‘‘ S ‘‘ X

by (rule rev-subsetD, intro Image-subsetI , fold trancl-unfold-right, auto)
from IH .hyps[OF ab ∗ this] IH .prems ab show False by auto

qed
}
with chain show False by auto

qed

lemma SN-O-comm: SN (R O S) ←→ SN (S O R)
by (intro iffI ; rule SN-on-O-comm[OF SN-on-subset2], auto)

lemma chain-mono: assumes R ′ ⊆ R chain R ′ seq shows chain R seq
using assms by auto

context
fixes S R
assumes push: S O R ⊆ R O S∗

begin

lemma rtrancl-O-push: S∗ O R ⊆ R O S∗

proof−
{ fix n

have
∧

s t. (s,t) ∈ S ^^ n O R =⇒ (s,t) ∈ R O S∗

proof(induct n)
case (Suc n)

then obtain u where (s,u) ∈ S (u,t) ∈ R O S∗ unfolding relpow-Suc by
blast

then have (s,t) ∈ S O R O S∗ by auto

68

also have ... ⊆ R O S∗ O S∗ using push by blast
also have ... ⊆ R O S∗ by auto
finally show ?case.

qed auto
}
thus ?thesis by blast

qed

lemma rtrancl-U-push: (S ∪ R)∗ = R∗ O S∗

proof(intro equalityI subrelI)
fix x y
assume (x,y) ∈ (S ∪ R)∗

also have ... ⊆ (S∗ O R)∗ O S∗ by regexp
finally obtain z where xz: (x,z) ∈ (S∗ O R)∗ and zy: (z,y) ∈ S∗ by auto
from xz have (x,z) ∈ R∗ O S∗

proof (induct rule: rtrancl-induct)
case (step z w)

then have (x,w) ∈ R∗ O S∗ O S∗ O R by auto
also have ... ⊆ R∗ O S∗ O R by regexp
also have ... ⊆ R∗ O R O S∗ using rtrancl-O-push by auto
also have ... ⊆ R∗ O S∗ by regexp
finally show ?case.

qed auto
with zy show (x,y) ∈ R∗ O S∗ by auto

qed regexp

lemma SN-on-O-push:
assumes SN : SN-on R X shows SN-on (R O S∗) X

proof
fix seq
have SN : SN-on R (R∗ ‘‘ X) using SN-on-Image-rtrancl[OF SN].
moreover assume seq (0 ::nat) ∈ X

then have seq 0 ∈ R∗ ‘‘ X by auto
ultimately show chain (R O S∗) seq =⇒ False
proof(induct seq 0 arbitrary: seq rule: SN-on-induct)

case IH
then have 01 : (seq 0 , seq 1) ∈ R O S∗

and 12 : (seq 1 , seq 2) ∈ R O S∗

and 23 : (seq 2 , seq 3) ∈ R O S∗ by (auto simp: eval-nat-numeral)
then obtain s t
where s: (seq 0 , s) ∈ R and s1 : (s, seq 1) ∈ S∗

and t: (seq 1 , t) ∈ R and t2 : (t, seq 2) ∈ S∗ by auto
from s1 t have (s,t) ∈ S∗ O R by auto
with rtrancl-O-push have st: (s,t) ∈ R O S∗ by auto
from t2 23 have (t, seq 3) ∈ S∗ O R O S∗ by auto
also from rtrancl-O-push have ... ⊆ R O S∗ O S∗ by blast
finally have t3 : (t, seq 3) ∈ R O S∗ by regexp
let ?seq = λi. case i of 0 ⇒ s | Suc 0 ⇒ t | i ⇒ seq (Suc i)
show ?case

69

proof(rule IH)
from s show (seq 0 , ?seq 0) ∈ R by auto
show chain (R O S∗) ?seq
proof (intro allI)

fix i show (?seq i, ?seq (Suc i)) ∈ R O S∗

proof (cases i)
case 0 with st show ?thesis by auto

next
case (Suc i) with t3 IH show ?thesis by (cases i, auto simp: eval-nat-numeral)
qed

qed
qed

qed
qed

lemma SN-on-Image-push:
assumes SN : SN-on R X shows SN-on R (S∗ ‘‘ X)

proof−
{ fix n

have SN-on R ((S^^n) ‘‘ X)
proof(induct n)

case 0 from SN show ?case by auto
case (Suc n)

from SN-on-O-push[OF this] have SN-on (R O S∗) ((S ^^ n) ‘‘ X).
from SN-on-Image[OF this]
have SN-on (R O S∗) ((R O S∗) ‘‘ (S ^^ n) ‘‘ X).
then have SN-on R ((R O S∗) ‘‘ (S ^^ n) ‘‘ X) by (rule SN-on-mono,

auto)
from SN-on-subset2 [OF Image-mono[OF push subset-refl] this]
have SN-on R (R ‘‘ (S ^^ Suc n) ‘‘ X) by (auto simp: relcomp-Image)
then show ?case by fast

qed
}
then show ?thesis by fast

qed

end

lemma not-SN-onI [intro]: f 0 ∈ X =⇒ chain R f =⇒ ¬ SN-on R X
by (unfold SN-on-def not-not, intro exI conjI)

lemma shift-comp[simp]: shift (f ◦ seq) n = f ◦ (shift seq n) by auto

lemma Id-on-union: Id-on (A ∪ B) = Id-on A ∪ Id-on B unfolding Id-on-def
by auto

lemma relpow-union-cases: (a,d) ∈ (A ∪ B)^^n =⇒ (a,d) ∈ B^^n ∨ (∃ b c k m.
(a,b) ∈ B^^k ∧ (b,c) ∈ A ∧ (c,d) ∈ (A ∪ B)^^m ∧ n = Suc (k + m))
proof (induct n arbitrary: a d)

case (Suc n a e)

70

let ?AB = A ∪ B
from Suc(2) obtain b where ab: (a,b) ∈ ?AB and be: (b,e) ∈ ?AB^^n by (rule

relpow-Suc-E2)
from ab
show ?case
proof

assume (a,b) ∈ A
show ?thesis
proof (rule disjI2 , intro exI conjI)

show Suc n = Suc (0 + n) by simp
show (a,b) ∈ A by fact

qed (insert be, auto)
next

assume ab: (a,b) ∈ B
from Suc(1)[OF be]
show ?thesis
proof

assume (b,e) ∈ B ^^ n
with ab show ?thesis

by (intro disjI1 relpow-Suc-I2)
next

assume ∃ c d k m. (b, c) ∈ B ^^ k ∧ (c, d) ∈ A ∧ (d, e) ∈ ?AB ^^ m ∧ n
= Suc (k + m)

then obtain c d k m where (b, c) ∈ B ^^ k and ∗: (c, d) ∈ A (d, e) ∈ ?AB
^^ m n = Suc (k + m) by blast

with ab have ac: (a,c) ∈ B ^^ (Suc k) by (intro relpow-Suc-I2)
show ?thesis

by (intro disjI2 exI conjI , rule ac, (rule ∗)+, simp add: ∗)
qed

qed
qed simp

lemma trans-refl-imp-rtrancl-id:
assumes trans r refl r
shows r∗ = r

proof
show r∗ ⊆ r
proof

fix x y
assume (x,y) ∈ r∗

thus (x,y) ∈ r
by (induct, insert assms, unfold refl-on-def trans-def , blast+)

qed
qed regexp

lemma trans-refl-imp-O-id:
assumes trans r refl r
shows r O r = r

proof(intro equalityI)

71

show r O r ⊆ r by(fact trans-O-subset[OF assms(1)])
have r ⊆ r O Id by auto
moreover have Id ⊆ r by(fact assms(2)[unfolded refl-O-iff])
ultimately show r ⊆ r O r by auto

qed

lemma relcomp3-I :
assumes (t, u) ∈ A and (s, t) ∈ B and (u, v) ∈ B
shows (s, v) ∈ B O A O B
using assms by blast

lemma relcomp3-transI :
assumes trans B and (t, u) ∈ B O A O B and (s, t) ∈ B and (u, v) ∈ B
shows (s, v) ∈ B O A O B

using assms by (auto simp: trans-def intro: relcomp3-I)

lemmas converse-inward = rtrancl-converse[symmetric] converse-Un converse-UNION
converse-relcomp

converse-converse converse-Id

lemma qc-SN-relto-iff :
assumes r O s ⊆ s O (s ∪ r)∗
shows SN (r∗ O s O r∗) = SN s

proof −
from converse-mono [THEN iffD2 , OF assms]
have ∗: s−1 O r−1 ⊆ (s−1 ∪ r−1)∗ O s−1 unfolding converse-inward .
have (r∗ O s O r∗)−1 = (r−1)∗ O s−1 O (r−1)∗

by (simp only: converse-relcomp O-assoc rtrancl-converse)
with qc-wf-relto-iff [OF ∗]
show ?thesis by (simp add: SN-iff-wf)

qed

lemma conversion-empty [simp]: conversion {} = Id
by (auto simp: conversion-def)

lemma symcl-idemp [simp]: (r↔)↔ = r↔ by auto

end

3 Relative Rewriting
theory Relative-Rewriting
imports Abstract-Rewriting
begin

Considering a relation R relative to another relation S, i.e., R-steps may
be preceded and followed by arbitrary many S-steps.
abbreviation (input) relto :: ′a rel ⇒ ′a rel ⇒ ′a rel where

relto R S ≡ S^∗ O R O S^∗

72

definition SN-rel-on :: ′a rel ⇒ ′a rel ⇒ ′a set ⇒ bool where
SN-rel-on R S ≡ SN-on (relto R S)

definition SN-rel-on-alt :: ′a rel ⇒ ′a rel ⇒ ′a set ⇒ bool where
SN-rel-on-alt R S T = (∀ f . chain (R ∪ S) f ∧ f 0 ∈ T −→ ¬ (INFM j. (f j, f

(Suc j)) ∈ R))

abbreviation SN-rel :: ′a rel ⇒ ′a rel ⇒ bool where
SN-rel R S ≡ SN-rel-on R S UNIV

abbreviation SN-rel-alt :: ′a rel ⇒ ′a rel ⇒ bool where
SN-rel-alt R S ≡ SN-rel-on-alt R S UNIV

lemma relto-absorb [simp]: relto R E O E∗ = relto R E E∗ O relto R E = relto R
E

using O-assoc and rtrancl-idemp-self-comp by (metis)+

lemma steps-preserve-SN-on-relto:
assumes steps: (a, b) ∈ (R ∪ S)^∗

and SN : SN-on (relto R S) {a}
shows SN-on (relto R S) {b}

proof −
let ?RS = relto R S
have (R ∪ S)^∗ ⊆ S^∗ ∪ ?RS^∗ by regexp
with steps have (a,b) ∈ S^∗ ∨ (a,b) ∈ ?RS^∗ by auto
thus ?thesis
proof

assume (a,b) ∈ ?RS^∗
from steps-preserve-SN-on[OF this SN] show ?thesis .

next
assume Ssteps: (a,b) ∈ S^∗
show ?thesis
proof

fix f
assume f 0 ∈ {b} and chain ?RS f
hence f0 : f 0 = b and steps:

∧
i. (f i, f (Suc i)) ∈ ?RS by auto

let ?g = λ i. if i = 0 then a else f i
have ¬ SN-on ?RS {a} unfolding SN-on-def not-not
proof (rule exI [of - ?g], intro conjI allI)

fix i
show (?g i, ?g (Suc i)) ∈ ?RS
proof (cases i)

case (Suc j)
show ?thesis using steps[of i] unfolding Suc by simp

next
case 0
from steps[of 0 , unfolded f0] Ssteps have steps: (a,f (Suc 0)) ∈ S^∗ O

?RS by blast

73

have (a,f (Suc 0)) ∈ ?RS
by (rule subsetD[OF - steps], regexp)

thus ?thesis unfolding 0 by simp
qed

qed simp
with SN show False by simp

qed
qed

qed

lemma step-preserves-SN-on-relto: assumes st: (s,t) ∈ R ∪ E
and SN : SN-on (relto R E) {s}
shows SN-on (relto R E) {t}
by (rule steps-preserve-SN-on-relto[OF - SN], insert st, auto)

lemma SN-rel-on-imp-SN-rel-on-alt: SN-rel-on R S T =⇒ SN-rel-on-alt R S T
proof (unfold SN-rel-on-def)

assume SN : SN-on (relto R S) T
show ?thesis
proof (unfold SN-rel-on-alt-def , intro allI impI)

fix f
assume steps: chain (R ∪ S) f ∧ f 0 ∈ T
with SN have SN : SN-on (relto R S) {f 0}

and steps:
∧

i. (f i, f (Suc i)) ∈ R ∪ S unfolding SN-defs by auto
obtain r where r :

∧
j. r j ≡ (f j, f (Suc j)) ∈ R by auto

show ¬ (INFM j. (f j, f (Suc j)) ∈ R)
proof (rule ccontr)

assume ¬ ?thesis
hence ih: infinitely-many r unfolding infinitely-many-def r by blast
obtain r-index where r-index = infinitely-many.index r by simp
with infinitely-many.index-p[OF ih] infinitely-many.index-ordered[OF ih] in-

finitely-many.index-not-p-between[OF ih]
have r-index:

∧
i. r (r-index i) ∧ r-index i < r-index (Suc i) ∧ (∀ j. r-index

i < j ∧ j < r-index (Suc i) −→ ¬ r j) by auto
obtain g where g:

∧
i. g i ≡ f (r-index i) ..

{
fix i
let ?ri = r-index i
let ?rsi = r-index (Suc i)
from r-index have isi: ?ri < ?rsi by auto
obtain ri rsi where ri: ri = ?ri and rsi: rsi = ?rsi by auto
with r-index[of i] steps have inter :

∧
j. ri < j ∧ j < rsi =⇒ (f j, f (Suc

j)) ∈ S unfolding r by auto
from ri isi rsi have risi: ri < rsi by simp
{

fix n
assume Suc n ≤ rsi − ri
hence (f (Suc ri), f (Suc (n + ri))) ∈ S^∗
proof (induct n, simp)

74

case (Suc n)
hence stepps: (f (Suc ri), f (Suc (n+ri))) ∈ S^∗ by simp
have (f (Suc (n+ri)), f (Suc (Suc n + ri))) ∈ S

using inter [of Suc n + ri] Suc(2) by auto
with stepps show ?case by simp

qed
}
from this[of rsi − ri − 1] risi have
(f (Suc ri), f rsi) ∈ S^∗ by simp

with ri rsi have ssteps: (f (Suc ?ri), f ?rsi) ∈ S^∗ by simp
with r-index[of i] have (f ?ri, f ?rsi) ∈ R O S^∗ unfolding r by auto
hence (g i, g (Suc i)) ∈ S^∗ O R O S^∗ using rtrancl-refl unfolding g by

auto
}
hence nSN : ¬ SN-on (S^∗ O R O S^∗) {g 0} unfolding SN-defs by blast
have SN : SN-on (S^∗ O R O S^∗) {f (r-index 0)}
proof (rule steps-preserve-SN-on-relto[OF - SN])

show (f 0 , f (r-index 0)) ∈ (R ∪ S)^∗
unfolding rtrancl-fun-conv
by (rule exI [of - f], rule exI [of - r-index 0], insert steps, auto)

qed
with nSN show False unfolding g ..

qed
qed

qed

lemma SN-rel-on-alt-imp-SN-rel-on: SN-rel-on-alt R S T =⇒ SN-rel-on R S T
proof (unfold SN-rel-on-def)

assume SN : SN-rel-on-alt R S T
show SN-on (relto R S) T
proof

fix f
assume start: f 0 ∈ T and chain (relto R S) f
hence steps:

∧
i. (f i, f (Suc i)) ∈ S^∗ O R O S^∗ by auto

let ?prop = λ i ai bi. (f i, bi) ∈ S^∗ ∧ (bi, ai) ∈ R ∧ (ai, f (Suc (i))) ∈ S^∗
{

fix i
from steps obtain bi ai where ?prop i ai bi by blast
hence ∃ ai bi. ?prop i ai bi by blast

}
hence ∀ i. ∃ bi ai. ?prop i ai bi by blast
from choice[OF this] obtain b where ∀ i. ∃ ai. ?prop i ai (b i) by blast
from choice[OF this] obtain a where steps:

∧
i. ?prop i (a i) (b i) by blast

from steps[of 0] have fa0 : (f 0 , a 0) ∈ S^∗ O R by auto
let ?prop = λ i li. (b i, a i) ∈ R ∧ (∀ j < length li. ((a i # li) ! j, (a i # li) !

Suc j) ∈ S) ∧ last (a i # li) = b (Suc i)
{

fix i
from steps[of i] steps[of Suc i] have (a i, f (Suc i)) ∈ S^∗ and (f (Suc i), b

75

(Suc i)) ∈ S^∗ by auto
from rtrancl-trans[OF this] steps[of i] have R: (b i, a i) ∈ R and S : (a i, b

(Suc i)) ∈ S^∗ by blast+
from S [unfolded rtrancl-list-conv] obtain li where last (a i # li) = b (Suc

i) ∧ (∀ j < length li. ((a i # li) ! j, (a i # li) ! Suc j) ∈ S) ..
with R have ?prop i li by blast
hence ∃ li. ?prop i li ..

}
hence ∀ i. ∃ li. ?prop i li ..
from choice[OF this] obtain l where steps:

∧
i. ?prop i (l i) by auto

let ?p = λ i. ?prop i (l i)
from steps have steps:

∧
i. ?p i by blast

let ?l = λ i. a i # l i
let ?l ′ = λ i. length (?l i)
let ?g = λ i. inf-concat-simple ?l ′ i
obtain g where g:

∧
i. g i = (let (ii,jj) = ?g i in ?l ii ! jj) by auto

have g0 : g 0 = a 0 unfolding g Let-def by simp
with fa0 have fg0 : (f 0 , g 0) ∈ S^∗ O R by auto
have fg0 : (f 0 , g 0) ∈ (R ∪ S)^∗

by (rule subsetD[OF - fg0], regexp)
have len:

∧
i j n. ?g n = (i,j) =⇒ j < length (?l i)

proof −
fix i j n
assume n: ?g n = (i,j)
show j < length (?l i)
proof (cases n)

case 0
with n have j = 0 by auto
thus ?thesis by simp

next
case (Suc nn)
obtain ii jj where nn: ?g nn = (ii,jj) by (cases ?g nn, auto)
show ?thesis
proof (cases Suc jj < length (?l ii))

case True
with nn Suc have ?g n = (ii, Suc jj) by auto
with n True show ?thesis by simp

next
case False
with nn Suc have ?g n = (Suc ii, 0) by auto
with n show ?thesis by simp

qed
qed

qed
have gsteps:

∧
i. (g i, g (Suc i)) ∈ R ∪ S

proof −
fix n
obtain i j where n: ?g n = (i, j) by (cases ?g n, auto)
show (g n, g (Suc n)) ∈ R ∪ S

76

proof (cases Suc j < length (?l i))
case True
with n have ?g (Suc n) = (i, Suc j) by auto

with n have gn: g n = ?l i ! j and gsn: g (Suc n) = ?l i ! (Suc j) unfolding
g by auto

thus ?thesis using steps[of i] True by auto
next

case False
with n have ?g (Suc n) = (Suc i, 0) by auto
with n have gn: g n = ?l i ! j and gsn: g (Suc n) = a (Suc i) unfolding

g by auto
from gn len[OF n] False have j = length (?l i) − 1 by auto
with gn have gn: g n = last (?l i) using last-conv-nth[of ?l i] by auto
from gn gsn show ?thesis using steps[of i] steps[of Suc i] by auto

qed
qed
have infR: INFM j. (g j, g (Suc j)) ∈ R unfolding INFM-nat-le
proof

fix n
obtain i j where n: ?g n = (i,j) by (cases ?g n, auto)
from len[OF n] have j: j < ?l ′ i .
let ?k = ?l ′ i − 1 − j
obtain k where k: k = j + ?k by auto
from j k have k2 : k = ?l ′ i − 1 and k3 : j + ?k < ?l ′ i by auto
from inf-concat-simple-add[OF n, of ?k, OF k3]
have gnk: ?g (n + ?k) = (i, k) by (simp only: k)
hence g (n + ?k) = ?l i ! k unfolding g by auto
hence gnk2 : g (n + ?k) = last (?l i) using last-conv-nth[of ?l i] k2 by auto
from k2 gnk have ?g (Suc (n+?k)) = (Suc i, 0) by auto
hence gnsk2 : g (Suc (n+?k)) = a (Suc i) unfolding g by auto
from steps[of i] steps[of Suc i] have main: (g (n+?k), g (Suc (n+?k))) ∈ R

by (simp only: gnk2 gnsk2)
show ∃ j ≥ n. (g j, g (Suc j)) ∈ R

by (rule exI [of - n + ?k], auto simp: main[simplified])
qed
from fg0 [unfolded rtrancl-fun-conv] obtain gg n where start: gg 0 = f 0

and n: gg n = g 0 and steps:
∧

i. i < n =⇒ (gg i, gg (Suc i)) ∈ R ∪ S by
auto

let ?h = λ i. if i < n then gg i else g (i − n)
obtain h where h: h = ?h by auto
{

fix i
assume i: i ≤ n
have h i = gg i using i unfolding h

by (cases i < n, auto simp: n)
} note gg = this
from gg[of 0] ‹f 0 ∈ T › have h0 : h 0 ∈ T unfolding start by auto
{

fix i

77

have (h i, h (Suc i)) ∈ R ∪ S
proof (cases i < n)

case True
from steps[of i] gg[of i] gg[of Suc i] True show ?thesis by auto

next
case False
hence i = n + (i − n) by auto
then obtain k where i: i = n + k by auto
from gsteps[of k] show ?thesis unfolding h i by simp

qed
} note hsteps = this
from SN [unfolded SN-rel-on-alt-def , rule-format, OF conjI [OF allI [OF hsteps]

h0]]
have ¬ (INFM j. (h j, h (Suc j)) ∈ R) .
moreover have INFM j. (h j, h (Suc j)) ∈ R unfolding INFM-nat-le
proof (rule)

fix m
from infR[unfolded INFM-nat-le, rule-format, of m]
obtain i where i: i ≥ m and g: (g i, g (Suc i)) ∈ R by auto
show ∃ n ≥ m. (h n , h (Suc n)) ∈ R

by (rule exI [of - i + n], unfold h, insert g i, auto)
qed
ultimately show False ..

qed
qed

lemma SN-rel-on-conv: SN-rel-on = SN-rel-on-alt
by (intro ext) (blast intro: SN-rel-on-imp-SN-rel-on-alt SN-rel-on-alt-imp-SN-rel-on)

lemmas SN-rel-defs = SN-rel-on-def SN-rel-on-alt-def

lemma SN-rel-on-alt-r-empty : SN-rel-on-alt {} S T
unfolding SN-rel-defs by auto

lemma SN-rel-on-alt-s-empty : SN-rel-on-alt R {} = SN-on R
by (intro ext, unfold SN-rel-defs SN-defs, auto)

lemma SN-rel-on-mono ′:
assumes R: R ⊆ R ′ and S : S ⊆ R ′ ∪ S ′ and SN : SN-rel-on R ′ S ′ T
shows SN-rel-on R S T

proof −
note conv = SN-rel-on-conv SN-rel-on-alt-def INFM-nat-le
show ?thesis unfolding conv
proof(intro allI impI)

fix f
assume chain (R ∪ S) f ∧ f 0 ∈ T
with R S have chain (R ′ ∪ S ′) f ∧ f 0 ∈ T by auto
from SN [unfolded conv, rule-format, OF this]

78

show ¬ (∀ m. ∃ n ≥ m. (f n, f (Suc n)) ∈ R) using R by auto
qed

qed

lemma relto-mono:
assumes R ⊆ R ′ and S ⊆ S ′

shows relto R S ⊆ relto R ′ S ′

using assms rtrancl-mono by blast

lemma SN-rel-on-mono:
assumes R: R ⊆ R ′ and S : S ⊆ S ′

and SN : SN-rel-on R ′ S ′ T
shows SN-rel-on R S T
using SN
unfolding SN-rel-on-def using SN-on-mono[OF - relto-mono[OF R S]] by blast

lemmas SN-rel-on-alt-mono = SN-rel-on-mono[unfolded SN-rel-on-conv]

lemma SN-rel-on-imp-SN-on:
assumes SN-rel-on R S T shows SN-on R T

proof
fix f
assume chain R f
and f0 : f 0 ∈ T
hence

∧
i. (f i, f (Suc i)) ∈ relto R S by blast

thus False using assms f0 unfolding SN-rel-on-def SN-defs by blast
qed

lemma relto-Id: relto R (S ∪ Id) = relto R S by simp

lemma SN-rel-on-Id:
shows SN-rel-on R (S ∪ Id) T = SN-rel-on R S T
unfolding SN-rel-on-def by (simp only: relto-Id)

lemma SN-rel-on-empty[simp]: SN-rel-on R {} T = SN-on R T
unfolding SN-rel-on-def by auto

lemma SN-rel-on-ideriv: SN-rel-on R S T = (¬ (∃ as. ideriv R S as ∧ as 0 ∈ T))
(is ?L = ?R)
proof

assume ?L
show ?R
proof

assume ∃ as. ideriv R S as ∧ as 0 ∈ T
then obtain as where id: ideriv R S as and T : as 0 ∈ T by auto
note id = id[unfolded ideriv-def]
from ‹?L›[unfolded SN-rel-on-conv SN-rel-on-alt-def , THEN spec[of - as]]

id T obtain i where i:
∧

j. j ≥ i =⇒ (as j, as (Suc j)) /∈ R by auto
with id[unfolded INFM-nat, THEN conjunct2 , THEN spec[of - Suc i]] show

79

False by auto
qed

next
assume ?R
show ?L

unfolding SN-rel-on-conv SN-rel-on-alt-def
proof(intro allI impI)

fix as
assume chain (R ∪ S) as ∧ as 0 ∈ T
with ‹?R›[unfolded ideriv-def] have ¬ (INFM i. (as i, as (Suc i)) ∈ R) by

auto
from this[unfolded INFM-nat] obtain i where i:

∧
j. i < j =⇒ (as j, as (Suc

j)) /∈ R by auto
show ¬ (INFM j. (as j, as (Suc j)) ∈ R) unfolding INFM-nat using i by

blast
qed

qed

lemma SN-rel-to-SN-rel-alt: SN-rel R S =⇒ SN-rel-alt R S
proof (unfold SN-rel-on-def)

assume SN : SN (relto R S)
show ?thesis
proof (unfold SN-rel-on-alt-def , intro allI impI)

fix f
presume steps: chain (R ∪ S) f
obtain r where r :

∧
j. r j ≡ (f j, f (Suc j)) ∈ R by auto

show ¬ (INFM j. (f j, f (Suc j)) ∈ R)
proof (rule ccontr)

assume ¬ ?thesis
hence ih: infinitely-many r unfolding infinitely-many-def r by blast
obtain r-index where r-index = infinitely-many.index r by simp
with infinitely-many.index-p[OF ih] infinitely-many.index-ordered[OF ih] in-

finitely-many.index-not-p-between[OF ih]
have r-index:

∧
i. r (r-index i) ∧ r-index i < r-index (Suc i) ∧ (∀ j. r-index

i < j ∧ j < r-index (Suc i) −→ ¬ r j) by auto
obtain g where g:

∧
i. g i ≡ f (r-index i) ..

{
fix i
let ?ri = r-index i
let ?rsi = r-index (Suc i)
from r-index have isi: ?ri < ?rsi by auto
obtain ri rsi where ri: ri = ?ri and rsi: rsi = ?rsi by auto
with r-index[of i] steps have inter :

∧
j. ri < j ∧ j < rsi =⇒ (f j, f (Suc

j)) ∈ S unfolding r by auto
from ri isi rsi have risi: ri < rsi by simp
{

fix n
assume Suc n ≤ rsi − ri
hence (f (Suc ri), f (Suc (n + ri))) ∈ S^∗

80

proof (induct n, simp)
case (Suc n)
hence stepps: (f (Suc ri), f (Suc (n+ri))) ∈ S^∗ by simp
have (f (Suc (n+ri)), f (Suc (Suc n + ri))) ∈ S

using inter [of Suc n + ri] Suc(2) by auto
with stepps show ?case by simp

qed
}
from this[of rsi − ri − 1] risi have
(f (Suc ri), f rsi) ∈ S^∗ by simp

with ri rsi have ssteps: (f (Suc ?ri), f ?rsi) ∈ S^∗ by simp
with r-index[of i] have (f ?ri, f ?rsi) ∈ R O S^∗ unfolding r by auto
hence (g i, g (Suc i)) ∈ S^∗ O R O S^∗ using rtrancl-refl unfolding g by

auto
}
hence ¬ SN (S^∗ O R O S^∗) unfolding SN-defs by blast
with SN show False by simp

qed
qed simp

qed

lemma SN-rel-alt-to-SN-rel : SN-rel-alt R S =⇒ SN-rel R S
proof (unfold SN-rel-on-def)

assume SN : SN-rel-alt R S
show SN (relto R S)
proof

fix f
assume chain (relto R S) f
hence steps:

∧
i. (f i, f (Suc i)) ∈ S^∗ O R O S^∗ by auto

let ?prop = λ i ai bi. (f i, bi) ∈ S^∗ ∧ (bi, ai) ∈ R ∧ (ai, f (Suc (i))) ∈ S^∗
{

fix i
from steps obtain bi ai where ?prop i ai bi by blast
hence ∃ ai bi. ?prop i ai bi by blast

}
hence ∀ i. ∃ bi ai. ?prop i ai bi by blast
from choice[OF this] obtain b where ∀ i. ∃ ai. ?prop i ai (b i) by blast
from choice[OF this] obtain a where steps:

∧
i. ?prop i (a i) (b i) by blast

let ?prop = λ i li. (b i, a i) ∈ R ∧ (∀ j < length li. ((a i # li) ! j, (a i # li) !
Suc j) ∈ S) ∧ last (a i # li) = b (Suc i)

{
fix i
from steps[of i] steps[of Suc i] have (a i, f (Suc i)) ∈ S^∗ and (f (Suc i), b

(Suc i)) ∈ S^∗ by auto
from rtrancl-trans[OF this] steps[of i] have R: (b i, a i) ∈ R and S : (a i, b

(Suc i)) ∈ S^∗ by blast+
from S [unfolded rtrancl-list-conv] obtain li where last (a i # li) = b (Suc

i) ∧ (∀ j < length li. ((a i # li) ! j, (a i # li) ! Suc j) ∈ S) ..
with R have ?prop i li by blast

81

hence ∃ li. ?prop i li ..
}
hence ∀ i. ∃ li. ?prop i li ..
from choice[OF this] obtain l where steps:

∧
i. ?prop i (l i) by auto

let ?p = λ i. ?prop i (l i)
from steps have steps:

∧
i. ?p i by blast

let ?l = λ i. a i # l i
let ?l ′ = λ i. length (?l i)
let ?g = λ i. inf-concat-simple ?l ′ i
obtain g where g:

∧
i. g i = (let (ii,jj) = ?g i in ?l ii ! jj) by auto

have len:
∧

i j n. ?g n = (i,j) =⇒ j < length (?l i)
proof −

fix i j n
assume n: ?g n = (i,j)
show j < length (?l i)
proof (cases n)

case 0
with n have j = 0 by auto
thus ?thesis by simp

next
case (Suc nn)
obtain ii jj where nn: ?g nn = (ii,jj) by (cases ?g nn, auto)
show ?thesis
proof (cases Suc jj < length (?l ii))

case True
with nn Suc have ?g n = (ii, Suc jj) by auto
with n True show ?thesis by simp

next
case False
with nn Suc have ?g n = (Suc ii, 0) by auto
with n show ?thesis by simp

qed
qed

qed
have gsteps:

∧
i. (g i, g (Suc i)) ∈ R ∪ S

proof −
fix n
obtain i j where n: ?g n = (i, j) by (cases ?g n, auto)
show (g n, g (Suc n)) ∈ R ∪ S
proof (cases Suc j < length (?l i))

case True
with n have ?g (Suc n) = (i, Suc j) by auto

with n have gn: g n = ?l i ! j and gsn: g (Suc n) = ?l i ! (Suc j) unfolding
g by auto

thus ?thesis using steps[of i] True by auto
next

case False
with n have ?g (Suc n) = (Suc i, 0) by auto
with n have gn: g n = ?l i ! j and gsn: g (Suc n) = a (Suc i) unfolding

82

g by auto
from gn len[OF n] False have j = length (?l i) − 1 by auto
with gn have gn: g n = last (?l i) using last-conv-nth[of ?l i] by auto
from gn gsn show ?thesis using steps[of i] steps[of Suc i] by auto

qed
qed
have infR: INFM j. (g j, g (Suc j)) ∈ R unfolding INFM-nat-le
proof

fix n
obtain i j where n: ?g n = (i,j) by (cases ?g n, auto)
from len[OF n] have j: j < ?l ′ i .
let ?k = ?l ′ i − 1 − j
obtain k where k: k = j + ?k by auto
from j k have k2 : k = ?l ′ i − 1 and k3 : j + ?k < ?l ′ i by auto
from inf-concat-simple-add[OF n, of ?k, OF k3]
have gnk: ?g (n + ?k) = (i, k) by (simp only: k)
hence g (n + ?k) = ?l i ! k unfolding g by auto
hence gnk2 : g (n + ?k) = last (?l i) using last-conv-nth[of ?l i] k2 by auto
from k2 gnk have ?g (Suc (n+?k)) = (Suc i, 0) by auto
hence gnsk2 : g (Suc (n+?k)) = a (Suc i) unfolding g by auto
from steps[of i] steps[of Suc i] have main: (g (n+?k), g (Suc (n+?k))) ∈ R

by (simp only: gnk2 gnsk2)
show ∃ j ≥ n. (g j, g (Suc j)) ∈ R

by (rule exI [of - n + ?k], auto simp: main[simplified])
qed
from SN [unfolded SN-rel-on-alt-def] gsteps infR show False by blast

qed
qed

lemma SN-rel-alt-r-empty : SN-rel-alt {} S
unfolding SN-rel-defs by auto

lemma SN-rel-alt-s-empty : SN-rel-alt R {} = SN R
unfolding SN-rel-defs SN-defs by auto

lemma SN-rel-mono ′:
R ⊆ R ′ =⇒ S ⊆ R ′ ∪ S ′ =⇒ SN-rel R ′ S ′ =⇒ SN-rel R S
unfolding SN-rel-on-conv SN-rel-defs INFM-nat-le
by (metis contra-subsetD sup.left-idem sup.mono)

lemma SN-rel-mono:
assumes R: R ⊆ R ′ and S : S ⊆ S ′ and SN : SN-rel R ′ S ′

shows SN-rel R S
using SN unfolding SN-rel-defs using SN-subset[OF - relto-mono[OF R S]] by

blast

lemmas SN-rel-alt-mono = SN-rel-mono[unfolded SN-rel-on-conv]

lemma SN-rel-imp-SN : assumes SN-rel R S shows SN R

83

proof
fix f
assume ∀ i. (f i, f (Suc i)) ∈ R
hence

∧
i. (f i, f (Suc i)) ∈ relto R S by blast

thus False using assms unfolding SN-rel-defs SN-defs by fast
qed

lemma relto-trancl-conv : (relto R S)^+ = ((R ∪ S))^∗ O R O ((R ∪ S))^∗ by
regexp

lemma SN-rel-Id:
shows SN-rel R (S ∪ Id) = SN-rel R S
unfolding SN-rel-defs by (simp only: relto-Id)

lemma relto-rtrancl: relto R (S^∗) = relto R S by regexp

lemma SN-rel-empty[simp]: SN-rel R {} = SN R
unfolding SN-rel-defs by auto

lemma SN-rel-ideriv: SN-rel R S = (¬ (∃ as. ideriv R S as)) (is ?L = ?R)
proof

assume ?L
show ?R
proof

assume ∃ as. ideriv R S as
then obtain as where id: ideriv R S as by auto
note id = id[unfolded ideriv-def]
from ‹?L›[unfolded SN-rel-on-conv SN-rel-defs, THEN spec[of - as]]

id obtain i where i:
∧

j. j ≥ i =⇒ (as j, as (Suc j)) /∈ R by auto
with id[unfolded INFM-nat, THEN conjunct2 , THEN spec[of - Suc i]] show

False by auto
qed

next
assume ?R
show ?L

unfolding SN-rel-on-conv SN-rel-defs
proof (intro allI impI)

fix as
presume chain (R ∪ S) as
with ‹?R›[unfolded ideriv-def] have ¬ (INFM i. (as i, as (Suc i)) ∈ R) by

auto
from this[unfolded INFM-nat] obtain i where i:

∧
j. i < j =⇒ (as j, as (Suc

j)) /∈ R by auto
show ¬ (INFM j. (as j, as (Suc j)) ∈ R) unfolding INFM-nat using i by

blast
qed simp

qed

lemma SN-rel-map:

84

fixes R Rw R ′ Rw ′ :: ′a rel
defines A: A ≡ R ′ ∪ Rw ′

assumes SN : SN-rel R ′ Rw ′

and R:
∧

s t. (s,t) ∈ R =⇒ (f s, f t) ∈ A^∗ O R ′ O A^∗
and Rw:

∧
s t. (s,t) ∈ Rw =⇒ (f s, f t) ∈ A^∗

shows SN-rel R Rw
unfolding SN-rel-defs

proof
fix g
assume steps: chain (relto R Rw) g
let ?f = λi. (f (g i))
obtain h where h: h = ?f by auto
{

fix i
let ?m = λ (x,y). (f x, f y)
{

fix s t
assume (s,t) ∈ Rw^∗
hence ?m (s,t) ∈ A^∗
proof (induct)

case base show ?case by simp
next

case (step t u)
from Rw[OF step(2)] step(3)
show ?case by auto

qed
} note Rw = this
from steps have (g i, g (Suc i)) ∈ relto R Rw ..
from this
obtain s t where gs: (g i,s) ∈ Rw^∗ and st: (s,t) ∈ R and tg: (t, g (Suc i))

∈ Rw^∗ by auto
from Rw[OF gs] R[OF st] Rw[OF tg]
have step: (?f i, ?f (Suc i)) ∈ A^∗ O (A^∗ O R ′ O A^∗) O A^∗

by fast
have (?f i, ?f (Suc i)) ∈ A^∗ O R ′ O A^∗

by (rule subsetD[OF - step], regexp)
hence (h i, h (Suc i)) ∈ (relto R ′ Rw ′)^+

unfolding A h relto-trancl-conv .
}
hence ¬ SN ((relto R ′ Rw ′)^+) by auto
with SN-imp-SN-trancl[OF SN [unfolded SN-rel-on-def]]
show False by simp

qed

datatype SN-rel-ext-type = top-s | top-ns | normal-s | normal-ns

fun SN-rel-ext-step :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ SN-rel-ext-type ⇒ ′a rel
where

SN-rel-ext-step P Pw R Rw top-s = P

85

| SN-rel-ext-step P Pw R Rw top-ns = Pw
| SN-rel-ext-step P Pw R Rw normal-s = R
| SN-rel-ext-step P Pw R Rw normal-ns = Rw

definition SN-rel-ext :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ (′a ⇒ bool) ⇒ bool
where

SN-rel-ext P Pw R Rw M ≡ (¬ (∃ f t.
(∀ i. (f i, f (Suc i)) ∈ SN-rel-ext-step P Pw R Rw (t i))
∧ (∀ i. M (f i))
∧ (INFM i. t i ∈ {top-s,top-ns})
∧ (INFM i. t i ∈ {top-s,normal-s})))

lemma SN-rel-ext-step-mono: assumes P ⊆ P ′ Pw ⊆ Pw ′ R ⊆ R ′ Rw ⊆ Rw ′

shows SN-rel-ext-step P Pw R Rw t ⊆ SN-rel-ext-step P ′ Pw ′ R ′ Rw ′ t
using assms
by (cases t, auto)

lemma SN-rel-ext-mono: assumes subset: P ⊆ P ′ Pw ⊆ Pw ′ R ⊆ R ′ Rw ⊆ Rw ′

and
SN : SN-rel-ext P ′ Pw ′ R ′ Rw ′ M shows SN-rel-ext P Pw R Rw M
using SN-rel-ext-step-mono[OF subset] SN unfolding SN-rel-ext-def by blast

lemma SN-rel-ext-trans:
fixes P Pw R Rw :: ′a rel and M :: ′a ⇒ bool
defines M ′: M ′ ≡ {(s,t). M t}
defines A: A ≡ (P ∪ Pw ∪ R ∪ Rw) ∩ M ′

assumes SN-rel-ext P Pw R Rw M
shows SN-rel-ext (A^∗ O (P ∩ M ′) O A^∗) (A^∗ O ((P ∪ Pw) ∩ M ′) O A^∗)

(A^∗ O ((P ∪ R) ∩ M ′) O A^∗) (A^∗) M (is SN-rel-ext ?P ?Pw ?R ?Rw M)
proof (rule ccontr)

let ?relt = SN-rel-ext-step ?P ?Pw ?R ?Rw
let ?rel = SN-rel-ext-step P Pw R Rw
assume ¬ ?thesis
from this[unfolded SN-rel-ext-def]
obtain f ty

where steps:
∧

i. (f i, f (Suc i)) ∈ ?relt (ty i)
and min:

∧
i. M (f i)

and inf1 : INFM i. ty i ∈ {top-s, top-ns}
and inf2 : INFM i. ty i ∈ {top-s, normal-s}
by auto

let ?Un = λ tt.
⋃

(?rel ‘ tt)
let ?UnM = λ tt. (

⋃
(?rel ‘ tt)) ∩ M ′

let ?A = ?UnM {top-s,top-ns,normal-s,normal-ns}
let ?P ′ = ?UnM {top-s}
let ?Pw ′ = ?UnM {top-s,top-ns}
let ?R ′ = ?UnM {top-s,normal-s}
let ?Rw ′ = ?UnM {top-s,top-ns,normal-s,normal-ns}
have A: A = ?A unfolding A by auto

86

have P: (P ∩ M ′) = ?P ′ by auto
have Pw: (P ∪ Pw) ∩ M ′ = ?Pw ′ by auto
have R: (P ∪ R) ∩ M ′ = ?R ′ by auto
have Rw: A = ?Rw ′ unfolding A ..
{

fix s t tt
assume m: M s and st: (s,t) ∈ ?UnM tt
hence ∃ typ ∈ tt. (s,t) ∈ ?rel typ ∧ M s ∧ M t unfolding M ′ by auto

} note one-step = this
let ?seq = λ s t g n ty. s = g 0 ∧ t = g n ∧ (∀ i < n. (g i, g (Suc i)) ∈ ?rel (ty

i)) ∧ (∀ i ≤ n. M (g i))
{

fix s t
assume m: M s and st: (s,t) ∈ A^∗
from st[unfolded rtrancl-fun-conv]
obtain g n where g0 : g 0 = s and gn: g n = t and steps:

∧
i. i < n =⇒ (g

i, g (Suc i)) ∈ ?A unfolding A by auto
{

fix i
assume i ≤ n
have M (g i)
proof (cases i)

case 0
show ?thesis unfolding 0 g0 by (rule m)

next
case (Suc j)
with ‹i ≤ n› have j < n by auto
from steps[OF this] show ?thesis unfolding Suc M ′ by auto

qed
} note min = this
{

fix i
assume i: i < n hence i ′: i ≤ n by auto
from i ′ one-step[OF min steps[OF i]]
have ∃ ty. (g i, g (Suc i)) ∈ ?rel ty by blast

}
hence ∀ i. (∃ ty. i < n −→ (g i, g (Suc i)) ∈ ?rel ty) by auto
from choice[OF this]
obtain tt where steps:

∧
i. i < n =⇒ (g i, g (Suc i)) ∈ ?rel (tt i) by auto

from g0 gn steps min
have ?seq s t g n tt by auto
hence ∃ g n tt. ?seq s t g n tt by blast

} note A-steps = this
let ?seqtt = λ s t tt g n ty. s = g 0 ∧ t = g n ∧ n > 0 ∧ (∀ i<n. (g i, g (Suc

i)) ∈ ?rel (ty i)) ∧ (∀ i ≤ n. M (g i)) ∧ (∃ i < n. ty i ∈ tt)
{

fix s t tt
assume m: M s and st: (s,t) ∈ A^∗ O ?UnM tt O A^∗
then obtain u v where su: (s,u) ∈ A^∗ and uv: (u,v) ∈ ?UnM tt and vt:

87

(v,t) ∈ A^∗
by auto

from A-steps[OF m su] obtain g1 n1 ty1 where seq1 : ?seq s u g1 n1 ty1 by
auto

from uv have M v unfolding M ′ by auto
from A-steps[OF this vt] obtain g2 n2 ty2 where seq2 : ?seq v t g2 n2 ty2 by

auto
from seq1 have M u by auto
from one-step[OF this uv] obtain ty where ty: ty ∈ tt and uv: (u,v) ∈ ?rel

ty by auto
let ?g = λ i. if i ≤ n1 then g1 i else g2 (i − (Suc n1))
let ?ty = λ i. if i < n1 then ty1 i else if i = n1 then ty else ty2 (i − (Suc n1))
let ?n = Suc (n1 + n2)
have ex: ∃ i < ?n. ?ty i ∈ tt

by (rule exI [of - n1], simp add: ty)
have steps: ∀ i < ?n. (?g i, ?g (Suc i)) ∈ ?rel (?ty i)
proof (intro allI impI)

fix i
assume i < ?n
show (?g i, ?g (Suc i)) ∈ ?rel (?ty i)
proof (cases i ≤ n1)

case True
with seq1 seq2 uv show ?thesis by auto

next
case False
hence i = Suc n1 + (i − Suc n1) by auto
then obtain k where i: i = Suc n1 + k by auto
with ‹i < ?n› have k < n2 by auto
thus ?thesis using seq2 unfolding i by auto

qed
qed
from steps seq1 seq2 ex
have seq: ?seqtt s t tt ?g ?n ?ty by auto
have ∃ g n ty. ?seqtt s t tt g n ty

by (intro exI , rule seq)
} note A-tt-A = this
let ?tycon = λ ty1 ty2 tt ty ′ n. ty1 = ty2 −→ (∃ i < n. ty ′ i ∈ tt)
let ?seqt = λ i ty g n ty ′. f i = g 0 ∧ f (Suc i) = g n ∧ (∀ j < n. (g j, g (Suc

j)) ∈ ?rel (ty ′ j)) ∧ (∀ j ≤ n. M (g j))
∧ (?tycon (ty i) top-s {top-s} ty ′ n)
∧ (?tycon (ty i) top-ns {top-s,top-ns} ty ′ n)
∧ (?tycon (ty i) normal-s {top-s,normal-s} ty ′ n)

{
fix i
have ∃ g n ty ′. ?seqt i ty g n ty ′

proof (cases ty i)
case top-s
from steps[of i, unfolded top-s]
have (f i, f (Suc i)) ∈ ?P by auto

88

from A-tt-A[OF min this[unfolded P]]
show ?thesis unfolding top-s by auto

next
case top-ns
from steps[of i, unfolded top-ns]
have (f i, f (Suc i)) ∈ ?Pw by auto
from A-tt-A[OF min this[unfolded Pw]]
show ?thesis unfolding top-ns by auto

next
case normal-s
from steps[of i, unfolded normal-s]
have (f i, f (Suc i)) ∈ ?R by auto
from A-tt-A[OF min this[unfolded R]]
show ?thesis unfolding normal-s by auto

next
case normal-ns
from steps[of i, unfolded normal-ns]
have (f i, f (Suc i)) ∈ ?Rw by auto
from A-steps[OF min this]
show ?thesis unfolding normal-ns by auto

qed
}
hence ∀ i. ∃ g n ty ′. ?seqt i ty g n ty ′ by auto
from choice[OF this] obtain g where ∀ i. ∃ n ty ′. ?seqt i ty (g i) n ty ′ by auto
from choice[OF this] obtain n where ∀ i. ∃ ty ′. ?seqt i ty (g i) (n i) ty ′ by

auto
from choice[OF this] obtain ty ′ where ∀ i. ?seqt i ty (g i) (n i) (ty ′ i) by auto
hence partial:

∧
i. ?seqt i ty (g i) (n i) (ty ′ i) ..

let ?ind = inf-concat n
let ?g = λ k. (λ (i,j). g i j) (?ind k)
let ?ty = λ k. (λ (i,j). ty ′ i j) (?ind k)
have inf : INFM i. 0 < n i

unfolding INFM-nat-le
proof (intro allI)

fix m
from inf1 [unfolded INFM-nat-le]
obtain k where k: k ≥ m and ty: ty k ∈ {top-s, top-ns} by auto
show ∃ k ≥ m. 0 < n k
proof (intro exI conjI , rule k)

from partial[of k] ty show 0 < n k by (cases n k, auto)
qed

qed
note bounds = inf-concat-bounds[OF inf]
note inf-Suc = inf-concat-Suc[OF inf]
note inf-mono = inf-concat-mono[OF inf]
have ¬ SN-rel-ext P Pw R Rw M

unfolding SN-rel-ext-def simp-thms
proof (rule exI [of - ?g], rule exI [of - ?ty], intro conjI allI)

89

fix k
obtain i j where ik: ?ind k = (i,j) by force
from bounds[OF this] have j: j < n i by auto
show M (?g k) unfolding ik using partial[of i] j by auto

next
fix k
obtain i j where ik: ?ind k = (i,j) by force
from bounds[OF this] have j: j < n i by auto
from partial[of i] j have step: (g i j, g i (Suc j)) ∈ ?rel (ty ′ i j) by auto
obtain i ′ j ′ where isk: ?ind (Suc k) = (i ′,j ′) by force
have i ′j ′: g i ′ j ′ = g i (Suc j)
proof (rule inf-Suc[OF - ik isk])

fix i
from partial[of i]
have g i (n i) = f (Suc i) by simp
also have ... = g (Suc i) 0 using partial[of Suc i] by simp
finally show g i (n i) = g (Suc i) 0 .

qed
show (?g k, ?g (Suc k)) ∈ ?rel (?ty k)

unfolding ik isk split i ′j ′
by (rule step)

next
show INFM i. ?ty i ∈ {top-s, top-ns}

unfolding INFM-nat-le
proof (intro allI)

fix k
obtain i j where ik: ?ind k = (i,j) by force
from inf1 [unfolded INFM-nat] obtain i ′ where i ′: i ′ > i and ty: ty i ′ ∈

{top-s, top-ns} by auto
from partial[of i ′] ty obtain j ′ where j ′: j ′ < n i ′ and ty ′: ty ′ i ′ j ′ ∈ {top-s,

top-ns} by auto
from inf-concat-surj[of - n, OF j ′] obtain k ′ where ik ′: ?ind k ′ = (i ′,j ′) ..

from inf-mono[OF ik ik ′ i ′] have k: k ≤ k ′ by simp
show ∃ k ′ ≥ k. ?ty k ′ ∈ {top-s, top-ns}

by (intro exI conjI , rule k, unfold ik ′ split, rule ty ′)
qed

next
show INFM i. ?ty i ∈ {top-s, normal-s}

unfolding INFM-nat-le
proof (intro allI)

fix k
obtain i j where ik: ?ind k = (i,j) by force
from inf2 [unfolded INFM-nat] obtain i ′ where i ′: i ′ > i and ty: ty i ′ ∈

{top-s, normal-s} by auto
from partial[of i ′] ty obtain j ′ where j ′: j ′ < n i ′ and ty ′: ty ′ i ′ j ′ ∈ {top-s,

normal-s} by auto
from inf-concat-surj[of - n, OF j ′] obtain k ′ where ik ′: ?ind k ′ = (i ′,j ′) ..
from inf-mono[OF ik ik ′ i ′] have k: k ≤ k ′ by simp

90

show ∃ k ′ ≥ k. ?ty k ′ ∈ {top-s, normal-s}
by (intro exI conjI , rule k, unfold ik ′ split, rule ty ′)

qed
qed
with assms show False by auto

qed

lemma SN-rel-ext-map: fixes P Pw R Rw P ′ Pw ′ R ′ Rw ′ :: ′a rel and M M ′ :: ′a
⇒ bool

defines Ms: Ms ≡ {(s,t). M ′ t}
defines A: A ≡ (P ′ ∪ Pw ′ ∪ R ′ ∪ Rw ′) ∩ Ms
assumes SN : SN-rel-ext P ′ Pw ′ R ′ Rw ′ M ′

and P:
∧

s t. M s =⇒ M t =⇒ (s,t) ∈ P =⇒ (f s, f t) ∈ (A^∗ O (P ′ ∩ Ms) O
A^∗) ∧ I t

and Pw:
∧

s t. M s =⇒ M t =⇒ (s,t) ∈ Pw =⇒ (f s, f t) ∈ (A^∗ O ((P ′ ∪ Pw ′)
∩ Ms) O A^∗) ∧ I t

and R:
∧

s t. I s =⇒ M s =⇒ M t =⇒ (s,t) ∈ R =⇒ (f s, f t) ∈ (A^∗ O ((P ′

∪ R ′) ∩ Ms) O A^∗) ∧ I t
and Rw:

∧
s t. I s =⇒ M s =⇒ M t =⇒ (s,t) ∈ Rw =⇒ (f s, f t) ∈ A^∗ ∧ I t

shows SN-rel-ext P Pw R Rw M
proof −

note SN = SN-rel-ext-trans[OF SN]
let ?P = (A^∗ O (P ′ ∩ Ms) O A^∗)
let ?Pw = (A^∗ O ((P ′ ∪ Pw ′) ∩ Ms) O A^∗)
let ?R = (A^∗ O ((P ′ ∪ R ′) ∩ Ms) O A^∗)
let ?Rw = A^∗
let ?relt = SN-rel-ext-step ?P ?Pw ?R ?Rw
let ?rel = SN-rel-ext-step P Pw R Rw
show ?thesis
proof (rule ccontr)

assume ¬ ?thesis
from this[unfolded SN-rel-ext-def]
obtain g ty

where steps:
∧

i. (g i, g (Suc i)) ∈ ?rel (ty i)
and min:

∧
i. M (g i)

and inf1 : INFM i. ty i ∈ {top-s, top-ns}
and inf2 : INFM i. ty i ∈ {top-s, normal-s}
by auto

from inf1 [unfolded INFM-nat] obtain k where k: ty k ∈ {top-s, top-ns} by
auto

let ?k = Suc k
let ?i = shift id ?k
let ?f = λ i. f (shift g ?k i)
let ?ty = shift ty ?k
{

fix i
assume ty: ty i ∈ {top-s,top-ns}
note m = min[of i]

91

note ms = min[of Suc i]
from P[OF m ms]

Pw[OF m ms]
steps[of i]
ty

have (f (g i), f (g (Suc i))) ∈ ?relt (ty i) ∧ I (g (Suc i))
by (cases ty i, auto)

} note stepsP = this
{

fix i
assume I : I (g i)
note m = min[of i]
note ms = min[of Suc i]
from P[OF m ms]

Pw[OF m ms]
R[OF I m ms]
Rw[OF I m ms]
steps[of i]

have (f (g i), f (g (Suc i))) ∈ ?relt (ty i) ∧ I (g (Suc i))
by (cases ty i, auto)

} note stepsI = this
{

fix i
have I (g (?i i))
proof (induct i)

case 0
show ?case using stepsP[OF k] by simp

next
case (Suc i)
from stepsI [OF Suc] show ?case by simp

qed
} note I = this
have ¬ SN-rel-ext ?P ?Pw ?R ?Rw M ′

unfolding SN-rel-ext-def simp-thms
proof (rule exI [of - ?f], rule exI [of - ?ty], intro allI conjI)

fix i
show (?f i, ?f (Suc i)) ∈ ?relt (?ty i)

using stepsI [OF I [of i]] by auto
next

show INFM i. ?ty i ∈ {top-s, top-ns}
unfolding Infm-shift[of λi. i ∈ {top-s,top-ns} ty ?k]
by (rule inf1)

next
show INFM i. ?ty i ∈ {top-s, normal-s}

unfolding Infm-shift[of λi. i ∈ {top-s,normal-s} ty ?k]
by (rule inf2)

next
fix i
have A: A ⊆ Ms unfolding A by auto

92

from rtrancl-mono[OF this] have As: A^∗ ⊆ Ms^∗ by auto
have PM : ?P ⊆ Ms^∗ O Ms O Ms^∗ using As by auto
have PwM : ?Pw ⊆ Ms^∗ O Ms O Ms^∗ using As by auto
have RM : ?R ⊆ Ms^∗ O Ms O Ms^∗ using As by auto
have RwM : ?Rw ⊆ Ms^∗ using As by auto
from PM PwM RM have ?P ∪ ?Pw ∪ ?R ⊆ Ms^∗ O Ms O Ms^∗ (is ?PPR

⊆ -) by auto
also have ... ⊆ Ms^+ by regexp
also have ... = Ms
proof

have Ms^+ ⊆ Ms^∗ O Ms by regexp
also have ... ⊆ Ms unfolding Ms by auto
finally show Ms^+ ⊆ Ms .

qed regexp
finally have PPR: ?PPR ⊆ Ms .
show M ′ (?f i)
proof (induct i)

case 0
from stepsP[OF k] k
have (f (g k), f (g (Suc k))) ∈ ?PPR by (cases ty k, auto)
with PPR show ?case unfolding Ms by simp blast

next
case (Suc i)
show ?case
proof (cases ?ty i = normal-ns)

case False
hence ?ty i ∈ {top-s,top-ns,normal-s}

by (cases ?ty i, auto)
with stepsI [OF I [of i]] have (?f i, ?f (Suc i)) ∈ ?PPR

by auto
from subsetD[OF PPR this] have (?f i, ?f (Suc i)) ∈ Ms .
thus ?thesis unfolding Ms by auto

next
case True
with stepsI [OF I [of i]] have (?f i, ?f (Suc i)) ∈ ?Rw by auto
with RwM have mem: (?f i, ?f (Suc i)) ∈ Ms^∗ by auto
thus ?thesis
proof (cases)

case base
with Suc show ?thesis by simp

next
case step
thus ?thesis unfolding Ms by simp

qed
qed

qed
qed
with SN
show False unfolding A Ms by simp

93

qed
qed

lemma SN-rel-ext-map-min: fixes P Pw R Rw P ′ Pw ′ R ′ Rw ′ :: ′a rel and M M ′

:: ′a ⇒ bool
defines Ms: Ms ≡ {(s,t). M ′ t}
defines A: A ≡ P ′ ∩ Ms ∪ Pw ′ ∩ Ms ∪ R ′ ∪ Rw ′

assumes SN : SN-rel-ext P ′ Pw ′ R ′ Rw ′ M ′

and M :
∧

t. M t =⇒ M ′ (f t)
and M ′:

∧
s t. M ′ s =⇒ (s,t) ∈ R ′ ∪ Rw ′ =⇒ M ′ t

and P:
∧

s t. M s =⇒ M t =⇒ M ′ (f s) =⇒ M ′ (f t) =⇒ (s,t) ∈ P =⇒ (f s, f
t) ∈ (A^∗ O (P ′ ∩ Ms) O A^∗) ∧ I t

and Pw:
∧

s t. M s =⇒ M t =⇒ M ′ (f s) =⇒ M ′ (f t) =⇒ (s,t) ∈ Pw =⇒ (f
s, f t) ∈ (A^∗ O (P ′ ∩ Ms ∪ Pw ′ ∩ Ms) O A^∗) ∧ I t

and R:
∧

s t. I s =⇒ M s =⇒ M t =⇒ M ′ (f s) =⇒ M ′ (f t) =⇒ (s,t) ∈ R =⇒
(f s, f t) ∈ (A^∗ O (P ′ ∩ Ms ∪ R ′) O A^∗) ∧ I t

and Rw:
∧

s t. I s =⇒ M s =⇒ M t =⇒ M ′ (f s) =⇒ M ′ (f t) =⇒ (s,t) ∈ Rw
=⇒ (f s, f t) ∈ A^∗ ∧ I t

shows SN-rel-ext P Pw R Rw M
proof −

let ?Ms = {(s,t). M ′ t}
let ?A = (P ′ ∪ Pw ′ ∪ R ′ ∪ Rw ′) ∩ ?Ms
{

fix s t
assume s: M ′ s and (s,t) ∈ A
with M ′[OF s, of t] have (s,t) ∈ ?A ∧ M ′ t unfolding Ms A by auto

} note Aone = this
{

fix s t
assume s: M ′ s and steps: (s,t) ∈ A^∗
from steps have (s,t) ∈ ?A^∗ ∧ M ′ t
proof (induct)

case base from s show ?case by simp
next

case (step t u)
note one = Aone[OF step(3)[THEN conjunct2] step(2)]
from step(3) one
have steps: (s,u) ∈ ?A^∗ O ?A by blast
have (s,u) ∈ ?A^∗

by (rule subsetD[OF - steps], regexp)
with one show ?case by simp

qed
} note Amany = this
let ?P = (A^∗ O (P ′ ∩ Ms) O A^∗)
let ?Pw = (A^∗ O (P ′ ∩ Ms ∪ Pw ′ ∩ Ms) O A^∗)
let ?R = (A^∗ O (P ′ ∩ Ms ∪ R ′) O A^∗)
let ?Rw = A^∗
let ?P ′ = (?A^∗ O (P ′ ∩ ?Ms) O ?A^∗)

94

let ?Pw ′ = (?A^∗ O ((P ′ ∪ Pw ′) ∩ ?Ms) O ?A^∗)
let ?R ′ = (?A^∗ O ((P ′ ∪ R ′) ∩ ?Ms) O ?A^∗)
let ?Rw ′ = ?A^∗
show ?thesis
proof (rule SN-rel-ext-map[OF SN])

fix s t
assume s: M s and t: M t and step: (s,t) ∈ P
from P[OF s t M [OF s] M [OF t] step]
have (f s, f t) ∈ ?P and I : I t by auto
then obtain u v where su: (f s, u) ∈ A^∗ and uv: (u,v) ∈ P ′ ∩ Ms

and vt: (v,f t) ∈ A^∗ by auto
from Amany[OF M [OF s] su] have su: (f s, u) ∈ ?A^∗ and u: M ′ u by auto
from uv have v: M ′ v unfolding Ms by auto
from Amany[OF v vt] have vt: (v, f t) ∈ ?A^∗ by auto
from su uv vt I
show (f s, f t) ∈ ?P ′ ∧ I t unfolding Ms by auto

next
fix s t
assume s: M s and t: M t and step: (s,t) ∈ Pw
from Pw[OF s t M [OF s] M [OF t] step]
have (f s, f t) ∈ ?Pw and I : I t by auto
then obtain u v where su: (f s, u) ∈ A^∗ and uv: (u,v) ∈ P ′ ∩ Ms ∪ Pw ′ ∩

Ms
and vt: (v,f t) ∈ A^∗ by auto

from Amany[OF M [OF s] su] have su: (f s, u) ∈ ?A^∗ and u: M ′ u by auto
from uv have uv: (u,v) ∈ (P ′ ∪ Pw ′) ∩ ?Ms and v: M ′ v unfolding Ms

by auto
from Amany[OF v vt] have vt: (v, f t) ∈ ?A^∗ by auto
from su uv vt I
show (f s, f t) ∈ ?Pw ′ ∧ I t by auto

next
fix s t
assume I : I s and s: M s and t: M t and step: (s,t) ∈ R
from R[OF I s t M [OF s] M [OF t] step]
have (f s, f t) ∈ ?R and I : I t by auto
then obtain u v where su: (f s, u) ∈ A^∗ and uv: (u,v) ∈ P ′ ∩ Ms ∪ R ′

and vt: (v,f t) ∈ A^∗ by auto
from Amany[OF M [OF s] su] have su: (f s, u) ∈ ?A^∗ and u: M ′ u by auto
from uv M ′[OF u, of v] have uv: (u,v) ∈ (P ′ ∪ R ′) ∩ ?Ms and v: M ′ v

unfolding Ms
by auto

from Amany[OF v vt] have vt: (v, f t) ∈ ?A^∗ by auto
from su uv vt I
show (f s, f t) ∈ ?R ′ ∧ I t by auto

next
fix s t
assume I : I s and s: M s and t: M t and step: (s,t) ∈ Rw
from Rw[OF I s t M [OF s] M [OF t] step]
have steps: (f s, f t) ∈ ?Rw and I : I t by auto

95

from Amany[OF M [OF s] steps] I
show (f s, f t) ∈ ?Rw ′ ∧ I t by auto

qed
qed

lemma SN-relto-imp-SN-rel: SN (relto R S) =⇒ SN-rel R S
proof −

assume SN : SN (relto R S)
show ?thesis
proof (simp only: SN-rel-on-conv SN-rel-defs, intro allI impI)

fix f
presume steps: chain (R ∪ S) f
obtain r where r :

∧
j. r j ≡ (f j, f (Suc j)) ∈ R by auto

show ¬ (INFM j. (f j, f (Suc j)) ∈ R)
proof (rule ccontr)

assume ¬ ?thesis
hence ih: infinitely-many r unfolding infinitely-many-def r INFM-nat-le by

blast
obtain r-index where r-index = infinitely-many.index r by simp
with infinitely-many.index-p[OF ih] infinitely-many.index-ordered[OF ih] in-

finitely-many.index-not-p-between[OF ih]
have r-index:

∧
i. r (r-index i) ∧ r-index i < r-index (Suc i) ∧ (∀ j. r-index

i < j ∧ j < r-index (Suc i) −→ ¬ r j) by auto
obtain g where g:

∧
i. g i ≡ f (r-index i) ..

{
fix i
let ?ri = r-index i
let ?rsi = r-index (Suc i)
from r-index have isi: ?ri < ?rsi by auto
obtain ri rsi where ri: ri = ?ri and rsi: rsi = ?rsi by auto
with r-index[of i] steps have inter :

∧
j. ri < j ∧ j < rsi =⇒ (f j, f (Suc

j)) ∈ S unfolding r by auto
from ri isi rsi have risi: ri < rsi by simp
{

fix n
assume Suc n ≤ rsi − ri
hence (f (Suc ri), f (Suc (n + ri))) ∈ S^∗
proof (induct n, simp)

case (Suc n)
hence stepps: (f (Suc ri), f (Suc (n+ri))) ∈ S^∗ by simp
have (f (Suc (n+ri)), f (Suc (Suc n + ri))) ∈ S

using inter [of Suc n + ri] Suc(2) by auto
with stepps show ?case by simp

qed
}
from this[of rsi − ri − 1] risi have
(f (Suc ri), f rsi) ∈ S^∗ by simp

with ri rsi have ssteps: (f (Suc ?ri), f ?rsi) ∈ S^∗ by simp

96

with r-index[of i] have (f ?ri, f ?rsi) ∈ R O S^∗ unfolding r by auto
hence (g i, g (Suc i)) ∈ S^∗ O R O S^∗ using rtrancl-refl unfolding g by

auto
}
hence ¬ SN (S^∗ O R O S^∗) unfolding SN-defs by blast
with SN show False by simp

qed
qed simp

qed

lemma rtrancl-list-conv:
((s,t) ∈ R^∗) =
(∃ list. last (s # list) = t ∧ (∀ i. i < length list −→ ((s # list) ! i, (s # list) !

Suc i) ∈ R)) (is ?l = ?r)
proof

assume ?r
then obtain list where last (s # list) = t ∧ (∀ i. i < length list −→ ((s # list)

! i, (s # list) ! Suc i) ∈ R) ..
thus ?l
proof (induct list arbitrary: s, simp)

case (Cons u ll)
hence last (u # ll) = t ∧ (∀ i. i < length ll −→ ((u # ll) ! i, (u # ll) ! Suc

i) ∈ R) by auto
from Cons(1)[OF this] have rec: (u,t) ∈ R^∗ .
from Cons have (s, u) ∈ R by auto
with rec show ?case by auto

qed
next

assume ?l
from rtrancl-imp-seq[OF this]
obtain S n where s: S 0 = s and t: S n = t and steps: ∀ i<n. (S i, S (Suc

i)) ∈ R by auto
let ?list = map (λ i. S (Suc i)) [0 ..< n]
show ?r
proof (rule exI [of - ?list], intro conjI ,

cases n, simp add: s[symmetric] t[symmetric], simp add: t[symmetric])
show ∀ i < length ?list. ((s # ?list) ! i, (s # ?list) ! Suc i) ∈ R
proof (intro allI impI)

fix i
assume i: i < length ?list
thus ((s # ?list) ! i, (s # ?list) ! Suc i) ∈ R
proof (cases i, simp add: s[symmetric] steps)

case (Suc j)
with i steps show ?thesis by simp

qed
qed

qed
qed

97

fun choice :: (nat ⇒ ′a list) ⇒ nat ⇒ (nat × nat) where
choice f 0 = (0 ,0)
| choice f (Suc n) = (let (i, j) = choice f n in

if Suc j < length (f i)
then (i, Suc j)
else (Suc i, 0))

lemma SN-rel-imp-SN-relto : SN-rel R S =⇒ SN (relto R S)
proof −

assume SN : SN-rel R S
show SN (relto R S)
proof

fix f
assume ∀ i. (f i, f (Suc i)) ∈ relto R S
hence steps:

∧
i. (f i, f (Suc i)) ∈ S^∗ O R O S^∗ by auto

let ?prop = λ i ai bi. (f i, bi) ∈ S^∗ ∧ (bi, ai) ∈ R ∧ (ai, f (Suc (i))) ∈ S^∗
{

fix i
from steps obtain bi ai where ?prop i ai bi by blast
hence ∃ ai bi. ?prop i ai bi by blast

}
hence ∀ i. ∃ bi ai. ?prop i ai bi by blast
from choice[OF this] obtain b where ∀ i. ∃ ai. ?prop i ai (b i) by blast
from choice[OF this] obtain a where steps:

∧
i. ?prop i (a i) (b i) by blast

let ?prop = λ i li. (b i, a i) ∈ R ∧ (∀ j < length li. ((a i # li) ! j, (a i # li) !
Suc j) ∈ S) ∧ last (a i # li) = b (Suc i)

{
fix i
from steps[of i] steps[of Suc i] have (a i, f (Suc i)) ∈ S^∗ and (f (Suc i), b

(Suc i)) ∈ S^∗ by auto
from rtrancl-trans[OF this] steps[of i] have R: (b i, a i) ∈ R and S : (a i, b

(Suc i)) ∈ S^∗ by blast+
from S [unfolded rtrancl-list-conv] obtain li where last (a i # li) = b (Suc

i) ∧ (∀ j < length li. ((a i # li) ! j, (a i # li) ! Suc j) ∈ S) ..
with R have ?prop i li by blast
hence ∃ li. ?prop i li ..

}
hence ∀ i. ∃ li. ?prop i li ..
from choice[OF this] obtain l where steps:

∧
i. ?prop i (l i) by auto

let ?p = λ i. ?prop i (l i)
from steps have steps:

∧
i. ?p i by blast

let ?l = λ i. a i # l i
let ?g = λ i. choice (λ j. ?l j) i
obtain g where g:

∧
i. g i = (let (ii,jj) = ?g i in ?l ii ! jj) by auto

have len:
∧

i j n. ?g n = (i,j) =⇒ j < length (?l i)
proof −

fix i j n
assume n: ?g n = (i,j)

98

show j < length (?l i)
proof (cases n)

case 0
with n have j = 0 by auto
thus ?thesis by simp

next
case (Suc nn)
obtain ii jj where nn: ?g nn = (ii,jj) by (cases ?g nn, auto)
show ?thesis
proof (cases Suc jj < length (?l ii))

case True
with nn Suc have ?g n = (ii, Suc jj) by auto
with n True show ?thesis by simp

next
case False
with nn Suc have ?g n = (Suc ii, 0) by auto
with n show ?thesis by simp

qed
qed

qed
have gsteps:

∧
i. (g i, g (Suc i)) ∈ R ∪ S

proof −
fix n
obtain i j where n: ?g n = (i, j) by (cases ?g n, auto)
show (g n, g (Suc n)) ∈ R ∪ S
proof (cases Suc j < length (?l i))

case True
with n have ?g (Suc n) = (i, Suc j) by auto

with n have gn: g n = ?l i ! j and gsn: g (Suc n) = ?l i ! (Suc j) unfolding
g by auto

thus ?thesis using steps[of i] True by auto
next

case False
with n have ?g (Suc n) = (Suc i, 0) by auto
with n have gn: g n = ?l i ! j and gsn: g (Suc n) = a (Suc i) unfolding

g by auto
from gn len[OF n] False have j = length (?l i) − 1 by auto
with gn have gn: g n = last (?l i) using last-conv-nth[of ?l i] by auto
from gn gsn show ?thesis using steps[of i] steps[of Suc i] by auto

qed
qed
have infR: ∀ n. ∃ j ≥ n. (g j, g (Suc j)) ∈ R
proof

fix n
obtain i j where n: ?g n = (i,j) by (cases ?g n, auto)
from len[OF n] have j: j ≤ length (?l i) − 1 by simp
let ?k = length (?l i) − 1 − j
obtain k where k: k = j + ?k by auto
from j k have k2 : k = length (?l i) − 1 and k3 : j + ?k < length (?l i) by

99

auto
{

fix n i j k l
assume n: choice l n = (i,j) and j + k < length (l i)
hence choice l (n + k) = (i, j + k)

by (induct k arbitrary: j, simp, auto)
}
from this[OF n, of ?k, OF k3]
have gnk: ?g (n + ?k) = (i, k) by (simp only: k)
hence g (n + ?k) = ?l i ! k unfolding g by auto
hence gnk2 : g (n + ?k) = last (?l i) using last-conv-nth[of ?l i] k2 by auto
from k2 gnk have ?g (Suc (n+?k)) = (Suc i, 0) by auto
hence gnsk2 : g (Suc (n+?k)) = a (Suc i) unfolding g by auto
from steps[of i] steps[of Suc i] have main: (g (n+?k), g (Suc (n+?k))) ∈ R

by (simp only: gnk2 gnsk2)
show ∃ j ≥ n. (g j, g (Suc j)) ∈ R

by (rule exI [of - n + ?k], auto simp: main[simplified])
qed
from SN [simplified SN-rel-on-conv SN-rel-defs] gsteps infR show False

unfolding INFM-nat-le by fast
qed

qed

hide-const choice

lemma SN-relto-SN-rel-conv: SN (relto R S) = SN-rel R S
by (blast intro: SN-relto-imp-SN-rel SN-rel-imp-SN-relto)

lemma SN-rel-empty1 : SN-rel {} S
unfolding SN-rel-defs by auto

lemma SN-rel-empty2 : SN-rel R {} = SN R
unfolding SN-rel-defs SN-defs by auto

lemma SN-relto-mono:
assumes R: R ⊆ R ′ and S : S ⊆ S ′

and SN : SN (relto R ′ S ′)
shows SN (relto R S)
using SN SN-subset[OF - relto-mono[OF R S]] by blast

lemma SN-relto-imp-SN :
assumes SN (relto R S) shows SN R

proof
fix f
assume ∀ i. (f i, f (Suc i)) ∈ R
hence

∧
i. (f i, f (Suc i)) ∈ relto R S by blast

thus False using assms unfolding SN-defs by blast
qed

100

lemma SN-relto-Id:
SN (relto R (S ∪ Id)) = SN (relto R S)
by (simp only: relto-Id)

Termination inheritance by transitivity (see, e.g., Geser’s thesis).
lemma trans-subset-SN :

assumes trans R and R ⊆ (r ∪ s) and SN r and SN s
shows SN R

proof
fix f :: nat ⇒ ′a
assume f 0 ∈ UNIV

and chain: chain R f
have ∗:

∧
i j. i < j =⇒ (f i, f j) ∈ r ∪ s

using assms and chain-imp-trancl [OF chain] by auto
let ?M = {i. ∀ j>i. (f i, f j) /∈ r}
show False
proof (cases finite ?M)

let ?n = Max ?M
assume finite ?M
with Max-ge have ∀ i∈?M . i ≤ ?n by simp
then have ∀ k≥Suc ?n. ∃ k ′>k. (f k, f k ′) ∈ r by auto
with steps-imp-chainp [of Suc ?n λx y. (x, y) ∈ r] and assms

show False by auto
next

assume infinite ?M
then have INFM j. j ∈ ?M by (simp add: Inf-many-def)
then interpret infinitely-many λi. i ∈ ?M by (unfold-locales) assumption
define g where [simp]: g = index
have ∀ i. (f (g i), f (g (Suc i))) ∈ s
proof

fix i
have less: g i < g (Suc i) using index-ordered-less [of i Suc i] by simp
have g i ∈ ?M using index-p by simp
then have (f (g i), f (g (Suc i))) /∈ r using less by simp
moreover have (f (g i), f (g (Suc i))) ∈ r ∪ s using ∗ [OF less] by simp
ultimately show (f (g i), f (g (Suc i))) ∈ s by blast

qed
with ‹SN s› show False by (auto simp: SN-defs)

qed
qed

lemma SN-Un-conv:
assumes trans (r ∪ s)
shows SN (r ∪ s) ←→ SN r ∧ SN s
(is SN ?r ←→ ?rhs)

proof
assume SN (r ∪ s) thus SN r ∧ SN s

using SN-subset[of ?r] by blast
next

101

assume SN r ∧ SN s
with trans-subset-SN [OF assms subset-refl] show SN ?r by simp

qed

lemma SN-relto-Un:
SN (relto (R ∪ S) Q) ←→ SN (relto R (S ∪ Q)) ∧ SN (relto S Q)
(is SN ?a ←→ SN ?b ∧ SN ?c)

proof −
have eq: ?a^+ = ?b^+ ∪ ?c^+ by regexp
from SN-Un-conv[of ?b^+ ?c^+, unfolded eq[symmetric]]

show ?thesis unfolding SN-trancl-SN-conv by simp
qed

lemma SN-relto-split:
assumes SN (relto r (s ∪ q2) ∪ relto q1 (s ∪ q2)) (is SN ?a)

and SN (relto s q2) (is SN ?b)
shows SN (relto r (q1 ∪ q2) ∪ relto s (q1 ∪ q2)) (is SN ?c)

proof −
have ?c^+ ⊆ ?a^+ ∪ ?b^+ by regexp
from trans-subset-SN [OF - this, unfolded SN-trancl-SN-conv, OF - assms]

show ?thesis by simp
qed

lemma relto-trancl-subset: assumes a ⊆ c and b ⊆ c shows relto a b ⊆ c^+
proof −

have relto a b ⊆ (a ∪ b)^+ by regexp
also have . . . ⊆ c^+

by (rule trancl-mono-set, insert assms, auto)
finally show ?thesis .

qed

An explicit version of relto which mentions all intermediate terms
inductive relto-fun :: ′a rel ⇒ ′a rel ⇒ nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ bool) ⇒ nat
⇒ ′a × ′a ⇒ bool where

relto-fun: as 0 = a =⇒ as m = b =⇒
(
∧

i. i < m =⇒
(sel i −→ (as i, as (Suc i)) ∈ A) ∧ (¬ sel i −→ (as i, as (Suc i)) ∈ B))

=⇒ n = card { i . i < m ∧ sel i}
=⇒ (n = 0 ←→ m = 0) =⇒ relto-fun A B n as sel m (a,b)

lemma relto-funD: assumes relto-fun A B n as sel m (a,b)
shows as 0 = a as m = b∧

i. i < m =⇒ sel i =⇒ (as i, as (Suc i)) ∈ A∧
i. i < m =⇒ ¬ sel i =⇒ (as i, as (Suc i)) ∈ B

n = card { i . i < m ∧ sel i}
n = 0 ←→ m = 0
using assms[unfolded relto-fun.simps] by blast+

lemma relto-fun-refl: ∃ as sel. relto-fun A B 0 as sel 0 (a,a)

102

by (rule exI [of - λ -. a], rule exI , rule relto-fun, auto)

lemma relto-into-relto-fun: assumes (a,b) ∈ relto A B
shows ∃ as sel m. relto-fun A B (Suc 0) as sel m (a,b)

proof −
from assms obtain a ′ b ′ where aa: (a,a ′) ∈ B^∗ and ab: (a ′,b ′) ∈ A
and bb: (b ′,b) ∈ B^∗ by auto
from aa[unfolded rtrancl-fun-conv] obtain f1 n1 where

f1 : f1 0 = a f1 n1 = a ′ ∧ i. i<n1 =⇒ (f1 i, f1 (Suc i)) ∈ B by auto
from bb[unfolded rtrancl-fun-conv] obtain f2 n2 where

f2 : f2 0 = b ′ f2 n2 = b
∧

i. i<n2 =⇒ (f2 i, f2 (Suc i)) ∈ B by auto
let ?gen = λ aa ab bb i. if i < n1 then aa i else if i = n1 then ab else bb (i −

Suc n1)
let ?f = ?gen f1 a ′ f2
let ?sel = ?gen (λ -. False) True (λ -. False)
let ?m = Suc (n1 + n2)
show ?thesis
proof (rule exI [of - ?f], rule exI [of - ?sel], rule exI [of - ?m], rule relto-fun)

fix i
assume i: i < ?m
show (?sel i −→ (?f i, ?f (Suc i)) ∈ A) ∧ (¬ ?sel i −→ (?f i, ?f (Suc i)) ∈ B)
proof (cases i < n1)

case True
with f1 (3)[OF this] f1 (2) show ?thesis by (cases Suc i = n1 , auto)

next
case False note nle = this
show ?thesis
proof (cases i > n1)

case False
with nle have i = n1 by auto
thus ?thesis using f1 f2 ab by auto

next
case True
define j where j = i − Suc n1
have i: i = Suc n1 + j and j: j < n2 using i True unfolding j-def by

auto
thus ?thesis using f2 by auto

qed
qed

qed (insert f1 f2 , auto)
qed

lemma relto-fun-trans: assumes ab: relto-fun A B n1 as1 sel1 m1 (a,b)
and bc: relto-fun A B n2 as2 sel2 m2 (b,c)
shows ∃ as sel. relto-fun A B (n1 + n2) as sel (m1 + m2) (a,c)

proof −
from relto-funD[OF ab]
have 1 : as1 0 = a as1 m1 = b∧

i. i < m1 =⇒ (sel1 i −→ (as1 i, as1 (Suc i)) ∈ A) ∧ (¬ sel1 i −→ (as1 i,

103

as1 (Suc i)) ∈ B)
n1 = 0 ←→ m1 = 0 and card1 : n1 = card {i. i < m1 ∧ sel1 i} by blast+

from relto-funD[OF bc]
have 2 : as2 0 = b as2 m2 = c∧

i. i < m2 =⇒ (sel2 i −→ (as2 i, as2 (Suc i)) ∈ A) ∧ (¬ sel2 i −→ (as2 i,
as2 (Suc i)) ∈ B)

n2 = 0 ←→ m2 = 0 and card2 : n2 = card {i. i < m2 ∧ sel2 i} by blast+
let ?as = λ i. if i < m1 then as1 i else as2 (i − m1)
let ?sel = λ i. if i < m1 then sel1 i else sel2 (i − m1)
let ?m = m1 + m2
let ?n = n1 + n2
show ?thesis
proof (rule exI [of - ?as], rule exI [of - ?sel], rule relto-fun)

have id: { i . i < ?m ∧ ?sel i} = { i . i < m1 ∧ sel1 i} ∪ ((+) m1) ‘ { i. i
< m2 ∧ sel2 i}

(is - = ?A ∪ ?f ‘ ?B)
by force

have card (?A ∪ ?f ‘ ?B) = card ?A + card (?f ‘ ?B)
by (rule card-Un-disjoint, auto)

also have card (?f ‘ ?B) = card ?B
by (rule card-image, auto simp: inj-on-def)

finally show ?n = card { i . i < ?m ∧ ?sel i} unfolding card1 card2 id by
simp

next
fix i
assume i: i < ?m
show (?sel i −→ (?as i, ?as (Suc i)) ∈ A) ∧ (¬ ?sel i −→ (?as i, ?as (Suc i))

∈ B)
proof (cases i < m1)

case True
from 1 2 have [simp]: as2 0 = as1 m1 by simp
from True 1 (3)[of i] 1 (2) show ?thesis by (cases Suc i = m1 , auto)

next
case False
define j where j = i − m1
have i: i = m1 + j and j: j < m2 using i False unfolding j-def by auto
thus ?thesis using False 2 (3)[of j] by auto

qed
qed (insert 1 2 , auto)

qed

lemma reltos-into-relto-fun: assumes (a,b) ∈ (relto A B)^^n
shows ∃ as sel m. relto-fun A B n as sel m (a,b)
using assms

proof (induct n arbitrary: b)
case (0 b)
hence b: b = a by auto
show ?case unfolding b using relto-fun-refl[of A B a] by blast

next

104

case (Suc n c)
from relpow-Suc-E [OF Suc(2)]
obtain b where ab: (a,b) ∈ (relto A B)^^n and bc: (b,c) ∈ relto A B by auto
from Suc(1)[OF ab] obtain as sel m where

IH : relto-fun A B n as sel m (a, b) by auto
from relto-into-relto-fun[OF bc] obtain as sel m where relto-fun A B (Suc 0)

as sel m (b,c) by blast
from relto-fun-trans[OF IH this] show ?case by auto

qed

lemma relto-fun-into-reltos: assumes relto-fun A B n as sel m (a,b)
shows (a,b) ∈ (relto A B)^^n

proof −
note ∗ = relto-funD[OF assms]
{

fix m ′

let ?c = λ m ′. card {i. i < m ′ ∧ sel i}
assume m ′ ≤ m
hence (?c m ′ > 0 −→ (as 0 , as m ′) ∈ (relto A B)^^ ?c m ′) ∧ (?c m ′ = 0 −→

(as 0 , as m ′) ∈ B^∗)
proof (induct m ′)

case (Suc m ′)
let ?x = as 0
let ?y = as m ′

let ?z = as (Suc m ′)
let ?C = ?c (Suc m ′)
have C : ?C = ?c m ′ + (if (sel m ′) then 1 else 0)
proof −

have id: {i. i < Suc m ′ ∧ sel i} = {i. i < m ′ ∧ sel i} ∪ (if sel m ′ then
{m ′} else {})

by (cases sel m ′, auto, case-tac x = m ′, auto)
show ?thesis unfolding id by auto

qed
from Suc(2) have m ′: m ′ ≤ m and lt: m ′ < m by auto
from Suc(1)[OF m ′] have IH : ?c m ′ > 0 =⇒ (?x, ?y) ∈ (relto A B) ^^ ?c

m ′

?c m ′ = 0 =⇒ (?x, ?y) ∈ B^∗ by auto
from ∗(3−4)[OF lt] have yz: sel m ′ =⇒ (?y, ?z) ∈ A ¬ sel m ′ =⇒ (?y, ?z)

∈ B by auto
show ?case
proof (cases ?c m ′ = 0)

case True note c = this
from IH (2)[OF this] have xy: (?x, ?y) ∈ B^∗ by auto
show ?thesis
proof (cases sel m ′)

case False
from xy yz(2)[OF False] have xz: (?x, ?z) ∈ B^∗ by auto
from False c have C : ?C = 0 unfolding C by simp
from xz show ?thesis unfolding C by auto

105

next
case True
from xy yz(1)[OF True] have xz: (?x,?z) ∈ relto A B by auto
from True c have C : ?C = 1 unfolding C by simp
from xz show ?thesis unfolding C by auto

qed
next

case False
hence c: ?c m ′ > 0 (?c m ′ = 0) = False by arith+
from IH (1)[OF c(1)] have xy: (?x, ?y) ∈ (relto A B) ^^ ?c m ′ .
show ?thesis
proof (cases sel m ′)

case False
from c obtain k where ck: ?c m ′ = Suc k by (cases ?c m ′, auto)
from relpow-Suc-E [OF xy[unfolded this]] obtain
u where xu: (?x, u) ∈ (relto A B) ^^ k and uy: (u, ?y) ∈ relto A B by

auto
from uy yz(2)[OF False] have uz: (u, ?z) ∈ relto A B by force
with xu have xz: (?x,?z) ∈ (relto A B) ^^ ?c m ′ unfolding ck by auto
from False c have C : ?C = ?c m ′ unfolding C by simp
from xz show ?thesis unfolding C c by auto

next
case True
from xy yz(1)[OF True] have xz: (?x,?z) ∈ (relto A B) ^^ (Suc (?c m ′))

by auto
from c True have C : ?C = Suc (?c m ′) unfolding C by simp
from xz show ?thesis unfolding C by auto

qed
qed

qed simp
}
from this[of m] ∗ show ?thesis by auto

qed

lemma relto-relto-fun-conv: ((a,b) ∈ (relto A B)^^n) = (∃ as sel m. relto-fun A
B n as sel m (a,b))

using relto-fun-into-reltos[of A B n - - - a b] reltos-into-relto-fun[of a b n B A]
by blast

lemma relto-fun-intermediate: assumes A ⊆ C and B ⊆ C
and rf : relto-fun A B n as sel m (a,b)
shows i ≤ m =⇒ (a,as i) ∈ C^∗

proof (induct i)
case 0
from relto-funD[OF rf] show ?case by simp

next
case (Suc i)
hence IH : (a, as i) ∈ C^∗ and im: i < m by auto
from relto-funD(3−4)[OF rf im] assms have (as i, as (Suc i)) ∈ C by auto

106

with IH show ?case by auto
qed

lemma not-SN-on-rel-succ:
assumes ¬ SN-on (relto R E) {s}
shows ∃ t u. (s, t) ∈ E∗ ∧ (t, u) ∈ R ∧ ¬ SN-on (relto R E) {u}

proof −
obtain v where (s, v) ∈ relto R E and v: ¬ SN-on (relto R E) {v}

using assms by fast
moreover then obtain t and u

where (s, t) ∈ E^∗ and (t, u) ∈ R and uv: (u, v) ∈ E∗ by auto
moreover from uv have uv: (u,v) ∈ (R ∪ E)^∗ by regexp
moreover have ¬ SN-on (relto R E) {u} using

v steps-preserve-SN-on-relto[OF uv] by auto
ultimately show ?thesis by auto

qed

lemma SN-on-relto-relcomp: SN-on (relto R S) T = SN-on (S∗ O R) T (is ?L T
= ?R T)
proof

assume L: ?L T
{ fix t assume t ∈ T hence ?L {t} using L by fast }
thus ?R T by fast
next
{ fix s

have SN-on (relto R S) {s} = SN-on (S∗ O R) {s}
proof

let ?X = {s. ¬SN-on (relto R S) {s}}
{ assume ¬ ?L {s}

hence s ∈ ?X by auto
hence ¬ ?R {s}
proof(rule lower-set-imp-not-SN-on, intro ballI)

fix s assume s ∈ ?X
then obtain t u where (s,t) ∈ S∗ (t,u) ∈ R and u: u ∈ ?X

unfolding mem-Collect-eq by (metis not-SN-on-rel-succ)
hence (s,u) ∈ S∗ O R by auto
with u show ∃ u ∈ ?X . (s,u) ∈ S∗ O R by auto

qed
}
thus ?R {s} =⇒ ?L {s} by auto
assume ?L {s} thus ?R {s} by(rule SN-on-mono, auto)

qed
} note main = this
assume R: ?R T
{ fix t assume t ∈ T hence ?L {t} unfolding main using R by fast }
thus ?L T by fast

qed

lemma trans-relto:

107

assumes trans: trans R and S O R ⊆ R O S
shows trans (relto R S)

proof
fix a b c
assume ab: (a, b) ∈ S∗ O R O S∗ and bc: (b, c) ∈ S∗ O R O S∗

from rtrancl-O-push [of S R] assms(2) have comm: S∗ O R ⊆ R O S∗ by blast
from ab obtain d e where de: (a, d) ∈ S∗ (d, e) ∈ R (e, b) ∈ S∗ by auto
from bc obtain f g where fg: (b, f) ∈ S∗ (f , g) ∈ R (g, c) ∈ S∗ by auto
from de(3) fg(1) have (e, f) ∈ S∗ by auto
with fg(2) comm have (e, g) ∈ R O S∗ by blast
then obtain h where h: (e, h) ∈ R (h, g) ∈ S∗ by auto
with de(2) trans have dh: (d, h) ∈ R unfolding trans-def by blast
from fg(3) h(2) have (h, c) ∈ S∗ by auto
with de(1) dh(1) show (a, c) ∈ S∗ O R O S∗ by auto

qed

lemma relative-ending:
assumes chain: chain (R ∪ S) t

and t0 : t 0 ∈ X
and SN : SN-on (relto R S) X

shows ∃ j. ∀ i≥j. (t i, t (Suc i)) ∈ S − R
proof (rule ccontr)

assume ¬ ?thesis
with chain have ∀ i. ∃ j. j ≥ i ∧ (t j, t (Suc j)) ∈ R by blast
from choice [OF this] obtain f where R-steps: ∀ i. i ≤ f i ∧ (t (f i), t (Suc (f

i))) ∈ R ..
let ?t = λi. t (((Suc ◦ f) ^^ i) 0)
have ∀ i. (t i, t (Suc (f i))) ∈ (relto R S)+
proof

fix i
from R-steps have leq: i≤f i and step: (t(f i), t(Suc(f i))) ∈ R by auto
from chain-imp-rtrancl [OF chain leq] have (t i, t(f i)) ∈ (R ∪ S)∗ .
with step have (t i, t(Suc(f i))) ∈ (R ∪ S)∗ O R by auto
then show (t i, t(Suc(f i))) ∈ (relto R S)+ by regexp

qed
then have chain ((relto R S)+) ?t by simp
with t0 have ¬ SN-on ((relto R S)+) X by (unfold SN-on-def , auto intro: exI [of

- ?t])
with SN-on-trancl[OF SN] show False by auto

qed

from Geser’s thesis [p.32, Corollary-1], generalized for SN-on.
lemma SN-on-relto-Un:

assumes closure: relto (R ∪ R ′) S ‘‘ X ⊆ X
shows SN-on (relto (R ∪ R ′) S) X ←→ SN-on (relto R (R ′ ∪ S)) X ∧ SN-on

(relto R ′ S) X
(is ?c ←→ ?a ∧ ?b)

proof(safe)
assume SN : ?a and SN ′: ?b

108

from SN have SN : SN-on (relto (relto R S) (relto R ′ S)) X by (rule SN-on-subset1)
regexp

show ?c
proof

fix f
assume f0 : f 0 ∈ X and chain: chain (relto (R ∪ R ′) S) f
then have chain (relto R S ∪ relto R ′ S) f by auto
from relative-ending[OF this f0 SN]
have ∃ j. ∀ i ≥ j. (f i, f (Suc i)) ∈ relto R ′ S − relto R S by auto
then obtain j where ∀ i ≥ j. (f i, f (Suc i)) ∈ relto R ′ S by auto
then have chain (relto R ′ S) (shift f j) by auto
moreover have f j ∈ X
proof(induct j)

case 0 from f0 show ?case by simp
next

case (Suc j)
let ?s = (f j, f (Suc j))
from chain have ?s ∈ relto (R ∪ R ′) S by auto
with Image-closed-trancl[OF closure] Suc show f (Suc j) ∈ X by blast

qed
then have shift f j 0 ∈ X by auto
ultimately have ¬ SN-on (relto R ′ S) X by (intro not-SN-onI)
with SN ′ show False by auto

qed
next

assume SN : ?c
then show ?b by (rule SN-on-subset1 , auto)
moreover
from SN have SN-on ((relto (R ∪ R ′) S)+) X by (unfold SN-on-trancl-SN-on-conv)
then show ?a by (rule SN-on-subset1) regexp

qed

lemma SN-on-Un: (R ∪ R ′)‘‘X ⊆ X =⇒ SN-on (R ∪ R ′) X ←→ SN-on (relto R
R ′) X ∧ SN-on R ′ X

using SN-on-relto-Un[of {}] by simp

end

4 Strongly Normalizing Orders
theory SN-Orders
imports Abstract-Rewriting
begin

We define several classes of orders which are used to build ordered semir-
ings. Note that we do not use Isabelle’s preorders since the condition
x > y = x ≥ y ∧ y 6≥ x is sometimes not applicable. E.g., for δ-orders
over the rationals we have 0.2 ≥ 0.1 ∧ 0.1 6≥ 0.2, but 0.2 >δ 0.1 does not
hold if δ is larger than 0.1.

109

class non-strict-order = ord +
assumes ge-refl: x ≥ (x :: ′a)
and ge-trans[trans]: [[x ≥ y; (y :: ′a) ≥ z]] =⇒ x ≥ z
and max-comm: max x y = max y x
and max-ge-x[intro]: max x y ≥ x
and max-id: x ≥ y =⇒ max x y = x
and max-mono: x ≥ y =⇒ max z x ≥ max z y

begin
lemma max-ge-y[intro]: max x y ≥ y

unfolding max-comm[of x y] ..

lemma max-mono2 : x ≥ y =⇒ max x z ≥ max y z
unfolding max-comm[of - z] by (rule max-mono)

end

class ordered-ab-semigroup = non-strict-order + ab-semigroup-add + monoid-add
+

assumes plus-left-mono: x ≥ y =⇒ x + z ≥ y + z

lemma plus-right-mono: y ≥ (z :: ′a :: ordered-ab-semigroup) =⇒ x + y ≥ x + z
by (simp add: add.commute[of x], rule plus-left-mono, auto)

class ordered-semiring-0 = ordered-ab-semigroup + semiring-0 +
assumes times-left-mono: z ≥ 0 =⇒ x ≥ y =⇒ x ∗ z ≥ y ∗ z

and times-right-mono: x ≥ 0 =⇒ y ≥ z =⇒ x ∗ y ≥ x ∗ z
and times-left-anti-mono: x ≥ y =⇒ 0 ≥ z =⇒ y ∗ z ≥ x ∗ z

class ordered-semiring-1 = ordered-semiring-0 + semiring-1 +
assumes one-ge-zero: 1 ≥ 0

We do not use a class to define order-pairs of a strict and a weak-order
since often we have parametric strict orders, e.g. on rational numbers there
are several orders > where x > y = x ≥ y + δ for some parameter δ

locale order-pair =
fixes gt :: ′a :: {non-strict-order ,zero} ⇒ ′a ⇒ bool (infix ‹�› 50)
and default :: ′a
assumes compat[trans]: [[x ≥ y; y � z]] =⇒ x � z
and compat2 [trans]: [[x � y; y ≥ z]] =⇒ x � z
and gt-imp-ge: x � y =⇒ x ≥ y
and default-ge-zero: default ≥ 0

begin
lemma gt-trans[trans]: [[x � y; y � z]] =⇒ x � z

by (rule compat[OF gt-imp-ge])
end

locale one-mono-ordered-semiring-1 = order-pair gt
for gt :: ′a :: ordered-semiring-1 ⇒ ′a ⇒ bool (infix ‹�› 50) +
assumes plus-gt-left-mono: x � y =⇒ x + z � y + z
and default-gt-zero: default � 0

110

begin
lemma plus-gt-right-mono: x � y =⇒ a + x � a + y

unfolding add.commute[of a] by (rule plus-gt-left-mono)

lemma plus-gt-both-mono: x � y =⇒ a � b =⇒ x + a � y + b
by (rule gt-trans[OF plus-gt-left-mono plus-gt-right-mono])

end

locale SN-one-mono-ordered-semiring-1 = one-mono-ordered-semiring-1 + order-pair
+

assumes SN : SN {(x,y) . y ≥ 0 ∧ x � y}

locale SN-strict-mono-ordered-semiring-1 = SN-one-mono-ordered-semiring-1 +
fixes mono :: ′a :: ordered-semiring-1 ⇒ bool
assumes mono: [[mono x; y � z; x ≥ 0]] =⇒ x ∗ y � x ∗ z

locale both-mono-ordered-semiring-1 = order-pair gt
for gt :: ′a :: ordered-semiring-1 ⇒ ′a ⇒ bool (infix ‹�› 50) +
fixes arc-pos :: ′a ⇒ bool
assumes plus-gt-both-mono: [[x � y; z � u]] =⇒ x + z � y + u
and times-gt-left-mono: x � y =⇒ x ∗ z � y ∗ z
and times-gt-right-mono: y � z =⇒ x ∗ y � x ∗ z
and zero-leastI : x � 0
and zero-leastII : 0 � x =⇒ x = 0
and zero-leastIII : (x :: ′a) ≥ 0
and arc-pos-one: arc-pos (1 :: ′a)
and arc-pos-default: arc-pos default
and arc-pos-zero: ¬ arc-pos 0
and arc-pos-plus: arc-pos x =⇒ arc-pos (x + y)
and arc-pos-mult: [[arc-pos x; arc-pos y]] =⇒ arc-pos (x ∗ y)
and not-all-ge:

∧
c d. arc-pos d =⇒ ∃ e. e ≥ 0 ∧ arc-pos e ∧ ¬ (c ≥ d ∗ e)

begin
lemma max0-id: max 0 (x :: ′a) = x

unfolding max-comm[of 0]
by (rule max-id[OF zero-leastIII])

end

locale SN-both-mono-ordered-semiring-1 = both-mono-ordered-semiring-1 +
assumes SN : SN {(x,y) . arc-pos y ∧ x � y}

locale weak-SN-strict-mono-ordered-semiring-1 =
fixes weak-gt :: ′a :: ordered-semiring-1 ⇒ ′a ⇒ bool
and default :: ′a
and mono :: ′a ⇒ bool
assumes weak-gt-mono: ∀ x y. (x,y) ∈ set xys −→ weak-gt x y =⇒ ∃ gt.

SN-strict-mono-ordered-semiring-1 default gt mono ∧ (∀ x y. (x,y) ∈ set xys −→
gt x y)

111

locale weak-SN-both-mono-ordered-semiring-1 =
fixes weak-gt :: ′a :: ordered-semiring-1 ⇒ ′a ⇒ bool
and default :: ′a
and arc-pos :: ′a ⇒ bool
assumes weak-gt-both-mono: ∀ x y. (x,y) ∈ set xys −→ weak-gt x y =⇒ ∃ gt.

SN-both-mono-ordered-semiring-1 default gt arc-pos ∧ (∀ x y. (x,y) ∈ set xys −→
gt x y)

class poly-carrier = ordered-semiring-1 + comm-semiring-1

locale poly-order-carrier = SN-one-mono-ordered-semiring-1 default gt
for default :: ′a :: poly-carrier and gt (infix ‹�› 50) +
fixes power-mono :: bool
and discrete :: bool
assumes times-gt-mono: [[y � z; x ≥ 1]] =⇒ y ∗ x � z ∗ x
and power-mono: power-mono =⇒ x � y =⇒ y ≥ 0 =⇒ n ≥ 1 =⇒ x ^ n � y

^ n
and discrete: discrete =⇒ x ≥ y =⇒ ∃ k. x = (((+) 1)^^k) y

class large-ordered-semiring-1 = poly-carrier +
assumes ex-large-of-nat: ∃ x. of-nat x ≥ y

context ordered-semiring-1
begin
lemma pow-mono: assumes ab: a ≥ b and b: b ≥ 0

shows a ^ n ≥ b ^ n ∧ b ^ n ≥ 0
proof (induct n)

case 0
show ?case by (auto simp: ge-refl one-ge-zero)

next
case (Suc n)
hence abn: a ^ n ≥ b ^ n and bn: b ^ n ≥ 0 by auto
have bsn: b ^ Suc n ≥ 0 unfolding power-Suc

using times-left-mono[OF bn b] by auto
have a ^ Suc n = a ∗ a ^ n unfolding power-Suc by simp
also have ... ≥ b ∗ a ^ n

by (rule times-left-mono[OF ge-trans[OF abn bn] ab])
also have b ∗ a ^ n ≥ b ∗ b ^ n

by (rule times-right-mono[OF b abn])
finally show ?case using bsn unfolding power-Suc by simp

qed

lemma pow-ge-zero[intro]: assumes a: a ≥ (0 :: ′a)
shows a ^ n ≥ 0

proof (induct n)
case 0
from one-ge-zero show ?case by simp

next
case (Suc n)

112

show ?case using times-left-mono[OF Suc a] by simp
qed
end

lemma of-nat-ge-zero[intro,simp]: of-nat n ≥ (0 :: ′a :: ordered-semiring-1)
proof (induct n)

case 0
show ?case by (simp add: ge-refl)

next
case (Suc n)
from plus-right-mono[OF Suc, of 1] have of-nat (Suc n) ≥ (1 :: ′a) by simp
also have (1 :: ′a) ≥ 0 using one-ge-zero .
finally show ?case .

qed

lemma mult-ge-zero[intro]: (a :: ′a :: ordered-semiring-1) ≥ 0 =⇒ b ≥ 0 =⇒ a ∗
b ≥ 0

using times-left-mono[of b 0 a] by auto

lemma pow-mono-one: assumes a: a ≥ (1 :: ′a :: ordered-semiring-1)
shows a ^ n ≥ 1

proof (induct n)
case (Suc n)
show ?case unfolding power-Suc

using ge-trans[OF times-right-mono[OF ge-trans[OF a one-ge-zero] Suc], of 1]
a
by (auto simp: field-simps)

qed (auto simp: ge-refl)

lemma pow-mono-exp: assumes a: a ≥ (1 :: ′a :: ordered-semiring-1)
shows n ≥ m =⇒ a ^ n ≥ a ^ m

proof (induct m arbitrary: n)
case 0
show ?case using pow-mono-one[OF a] by auto

next
case (Suc m nn)
then obtain n where nn: nn = Suc n by (cases nn, auto)
note Suc = Suc[unfolded nn]
hence rec: a ^ n ≥ a ^ m by auto
show ?case unfolding nn power-Suc

by (rule times-right-mono[OF ge-trans[OF a one-ge-zero] rec])
qed

lemma mult-ge-one[intro]: assumes a: (a :: ′a :: ordered-semiring-1) ≥ 1
and b: b ≥ 1
shows a ∗ b ≥ 1

proof −
from ge-trans[OF b one-ge-zero] have b0 : b ≥ 0 .
from times-left-mono[OF b0 a] have a ∗ b ≥ b by simp

113

from ge-trans[OF this b] show ?thesis .
qed

lemma sum-list-ge-mono: fixes as :: (′a :: ordered-semiring-0) list
assumes length as = length bs
and

∧
i. i < length bs =⇒ as ! i ≥ bs ! i

shows sum-list as ≥ sum-list bs
using assms

proof (induct as arbitrary: bs)
case (Nil bs)
from Nil(1) show ?case by (simp add: ge-refl)

next
case (Cons a as bbs)
from Cons(2) obtain b bs where bbs: bbs = b # bs and len: length as = length

bs by (cases bbs, auto)
note ge = Cons(3)[unfolded bbs]
{

fix i
assume i < length bs
hence Suc i < length (b # bs) by simp
from ge[OF this] have as ! i ≥ bs ! i by simp

}
from Cons(1)[OF len this] have IH : sum-list as ≥ sum-list bs .
from ge[of 0] have ab: a ≥ b by simp
from ge-trans[OF plus-left-mono[OF ab] plus-right-mono[OF IH]]
show ?case unfolding bbs by simp

qed

lemma sum-list-ge-0-nth: fixes xs :: (′a :: ordered-semiring-0)list
assumes ge:

∧
i. i < length xs =⇒ xs ! i ≥ 0

shows sum-list xs ≥ 0
proof −

let ?l = replicate (length xs) (0 :: ′a)
have length xs = length ?l by simp
from sum-list-ge-mono[OF this] ge have sum-list xs ≥ sum-list ?l by simp
also have sum-list ?l = 0 using sum-list-0 [of ?l] by auto
finally show ?thesis .

qed

lemma sum-list-ge-0 : fixes xs :: (′a :: ordered-semiring-0)list
assumes ge:

∧
x. x ∈ set xs =⇒ x ≥ 0

shows sum-list xs ≥ 0
by (rule sum-list-ge-0-nth, insert ge[unfolded set-conv-nth], auto)

lemma foldr-max: a ∈ set as =⇒ foldr max as b ≥ (a :: ′a :: ordered-ab-semigroup)
proof (induct as arbitrary: b)

case Nil thus ?case by simp
next

case (Cons c as)

114

show ?case
proof (cases a = c)

case True
show ?thesis unfolding True by auto

next
case False
with Cons have foldr max as b ≥ a by auto
from ge-trans[OF - this] show ?thesis by auto

qed
qed

lemma of-nat-mono[intro]: assumes n ≥ m shows (of-nat n :: ′a :: ordered-semiring-1)
≥ of-nat m
proof −

let ?n = of-nat :: nat ⇒ ′a
from assms
show ?thesis
proof (induct m arbitrary: n)

case 0
show ?case by auto

next
case (Suc m nn)
then obtain n where nn: nn = Suc n by (cases nn, auto)
note Suc = Suc[unfolded nn]
hence rec: ?n n ≥ ?n m by simp
show ?case unfolding nn of-nat-Suc

by (rule plus-right-mono[OF rec])
qed

qed

non infinitesmal is the same as in the CADE07 bounded increase paper
definition non-inf :: ′a rel ⇒ bool
where non-inf r ≡ ∀ a f . ∃ i. (f i, f (Suc i)) /∈ r ∨ (f i, a) /∈ r

lemma non-infI [intro]: assumes
∧

a f . [[
∧

i. (f i, f (Suc i)) ∈ r]] =⇒ ∃ i. (f i,
a) /∈ r

shows non-inf r
using assms unfolding non-inf-def by blast

lemma non-infE [elim]: assumes non-inf r and
∧

i. (f i, f (Suc i)) /∈ r ∨ (f i,
a) /∈ r =⇒ P

shows P
using assms unfolding non-inf-def by blast

lemma non-inf-image:
assumes ni: non-inf r and image:

∧
a b. (a,b) ∈ s =⇒ (f a, f b) ∈ r

shows non-inf s
proof

fix a g

115

assume s:
∧

i. (g i, g (Suc i)) ∈ s
define h where h = f o g
from image[OF s] have h:

∧
i. (h i, h (Suc i)) ∈ r unfolding h-def comp-def .

from non-infE [OF ni, of h] have
∧

a. ∃ i. (h i, a) /∈ r using h by blast
thus ∃ i. (g i, a) /∈ s using image unfolding h-def comp-def by blast

qed

lemma SN-imp-non-inf : SN r =⇒ non-inf r
by (intro non-infI , auto)

lemma non-inf-imp-SN-bound: non-inf r =⇒ SN {(a,b). (b,c) ∈ r ∧ (a,b) ∈ r}
by (rule, auto)

end

5 Carriers of Strongly Normalizing Orders
theory SN-Order-Carrier
imports

SN-Orders
HOL.Rat

begin

This theory shows that standard semirings can be used in combination
with polynomials, e.g. the naturals, integers, and arbitrary Archemedean
fields by using delta-orders.

It also contains the arctic integers and arctic delta-orders where 0 is
-infty, 1 is zero, + is max and * is plus.

5.1 The standard semiring over the naturals
instantiation nat :: large-ordered-semiring-1
begin
instance by (intro-classes, auto)
end

definition nat-mono :: nat ⇒ bool where nat-mono x ≡ x 6= 0

interpretation nat-SN : SN-strict-mono-ordered-semiring-1 1 (>) :: nat ⇒ nat ⇒
bool nat-mono

by (unfold-locales, insert SN-nat-gt, auto simp: nat-mono-def)

interpretation nat-poly: poly-order-carrier 1 (>) :: nat ⇒ nat ⇒ bool True dis-
crete
proof (unfold-locales)

fix x y :: nat
assume ge: x ≥ y
obtain k where k: x − y = k by auto

116

show ∃ k. x = ((+) 1 ^^ k) y
proof (rule exI [of - k])

from ge k have x = k + y by simp
also have . . . = ((+) 1 ^^ k) y

by (induct k, auto)
finally show x = ((+) 1 ^^ k) y .

qed
qed (auto simp: field-simps power-strict-mono)

5.2 The standard semiring over the Archimedean fields using
delta-orderings

definition delta-gt :: ′a :: floor-ceiling ⇒ ′a ⇒ ′a ⇒ bool where
delta-gt δ ≡ (λ x y. x − y ≥ δ)

lemma non-inf-delta-gt: assumes delta: δ > 0
shows non-inf {(a,b) . delta-gt δ a b} (is non-inf ?r)

proof
let ?gt = delta-gt δ
fix a :: ′a and f
assume

∧
i. (f i, f (Suc i)) ∈ ?r

hence gt:
∧

i. ?gt (f i) (f (Suc i)) by simp
{

fix i
have f i ≤ f 0 − δ ∗ of-nat i
proof (induct i)

case (Suc i)
thus ?case using gt[of i, unfolded delta-gt-def] by (auto simp: field-simps)

qed simp
} note fi = this
{

fix r :: ′a
have of-nat (nat (ceiling r)) ≥ r
by (metis ceiling-le-zero le-of-int-ceiling less-le-not-le nat-0-iff not-less of-nat-0

of-nat-nat)
} note ceil-elim = this
define i where i = nat (ceiling ((f 0 − a) / δ))
from fi[of i] have f i − f 0 ≤ − δ ∗ of-nat (nat (ceiling ((f 0 − a) / δ)))

unfolding i-def by simp
also have . . . ≤ − δ ∗ ((f 0 − a) / δ) using ceil-elim[of (f 0 − a) / δ] delta

by (metis le-imp-neg-le minus-mult-commute mult-le-cancel-left-pos)
also have . . . = − f 0 + a using delta by auto
also have . . . < − f 0 + a + δ using delta by auto
finally have ¬ ?gt (f i) a unfolding delta-gt-def by arith
thus ∃ i. (f i, a) /∈ ?r by blast

qed

lemma delta-gt-SN : assumes dpos: δ > 0 shows SN {(x,y). 0 ≤ y ∧ delta-gt δ
x y}

117

proof −
from non-inf-imp-SN-bound[OF non-inf-delta-gt[OF dpos], of − δ]
show ?thesis unfolding delta-gt-def by auto

qed

definition delta-mono :: ′a :: floor-ceiling ⇒ bool where delta-mono x ≡ x ≥ 1

subclass (in floor-ceiling) large-ordered-semiring-1
proof

fix x :: ′a
from ex-le-of-int[of x] obtain z where x: x ≤ of-int z by auto
have z ≤ int (nat z) by auto
with x have x ≤ of-int (int (nat z))
by (metis (full-types) le-cases of-int-0-le-iff of-int-of-nat-eq of-nat-0-le-iff of-nat-nat

order-trans)
also have . . . = of-nat (nat z) unfolding of-int-of-nat-eq ..
finally
show ∃ y. x ≤ of-nat y by blast

qed (auto simp: mult-right-mono mult-left-mono mult-right-mono-neg max-def)

lemma delta-interpretation: assumes dpos: δ > 0 and default: δ ≤ def
shows SN-strict-mono-ordered-semiring-1 def (delta-gt δ) delta-mono

proof −
from dpos default have defz: 0 ≤ def by auto
show ?thesis
proof (unfold-locales)

show SN {(x,y). y ≥ 0 ∧ delta-gt δ x y} by (rule delta-gt-SN [OF dpos])
next

fix x y z :: ′a
assume delta-mono x and yz: delta-gt δ y z
hence x: 1 ≤ x unfolding delta-mono-def by simp
have ∃ d > 0 . delta-gt δ = (λ x y. d ≤ x − y)

by (rule exI [of - δ], auto simp: dpos delta-gt-def)
from this obtain d where d: 0 < d and rat: delta-gt δ = (λ x y. d ≤ x − y)

by auto
from yz have yzd: d ≤ y − z by (simp add: rat)
show delta-gt δ (x ∗ y) (x ∗ z)
proof (simp only: rat)

let ?p = (x − 1) ∗ (y − z)
from x have x1 : 0 ≤ x − 1 by auto
from yzd d have yz0 : 0 ≤ y − z by auto
have 0 ≤ ?p

by (rule mult-nonneg-nonneg[OF x1 yz0])
have x ∗ y − x ∗ z = x ∗ (y − z) using right-diff-distrib[of x y z] by auto
also have . . . = ((x − 1) + 1) ∗ (y − z) by auto
also have . . . = ?p + 1 ∗ (y − z) by (rule ring-distribs(2))
also have . . . = ?p + (y − z) by simp
also have . . . ≥ (0 + d) using yzd ‹0 ≤ ?p› by auto

118

finally
show d ≤ x ∗ y − x ∗ z by auto

qed
qed (insert dpos, auto simp: delta-gt-def default defz)

qed

lemma delta-poly: assumes dpos: δ > 0 and default: δ ≤ def
shows poly-order-carrier def (delta-gt δ) (1 ≤ δ) False

proof −
from delta-interpretation[OF dpos default]
interpret SN-strict-mono-ordered-semiring-1 def delta-gt δ delta-mono .
interpret poly-order-carrier def delta-gt δ False False
proof(unfold-locales)

fix y z x :: ′a
assume gt: delta-gt δ y z and ge: x ≥ 1
from ge have ge: x ≥ 0 and m: delta-mono x unfolding delta-mono-def by

auto
show delta-gt δ (y ∗ x) (z ∗ x)

using mono[OF m gt ge] by (auto simp: field-simps)
next

fix x y :: ′a and n :: nat
assume False thus delta-gt δ (x ^ n) (y ^ n) ..

next
fix x y :: ′a
assume False
thus ∃ k. x = ((+) 1 ^^ k) y by simp

qed
show ?thesis
proof(unfold-locales)

fix x y :: ′a and n :: nat
assume one: 1 ≤ δ and gt: delta-gt δ x y and y: y ≥ 0 and n: 1 ≤ n
then obtain p where n: n = Suc p and x: x ≥ 1 and y2 : 0 ≤ y and xy: x

≥ y by (cases n, auto simp: delta-gt-def)
show delta-gt δ (x ^ n) (y ^ n)
proof (simp only: n, induct p, simp add: gt)

case (Suc p)
from times-gt-mono[OF this x]

have one: delta-gt δ (x ^ Suc (Suc p)) (x ∗ y ^ Suc p) by (auto simp:
field-simps)

also have . . . ≥ y ∗ y ^ Suc p
by (rule times-left-mono[OF - xy], auto simp: zero-le-power [OF y2 , of Suc

p, simplified])
finally show ?case by auto

qed
next

fix x y :: ′a
assume False
thus ∃ k. x = ((+) 1 ^^ k) y by simp

qed (rule times-gt-mono, auto)

119

qed

lemma delta-minimal-delta: assumes
∧

x y. (x,y) ∈ set xys =⇒ x > y
shows ∃ δ > 0 . ∀ x y. (x,y) ∈ set xys −→ delta-gt δ x y

using assms
proof (induct xys)

case Nil
show ?case by (rule exI [of - 1], auto)

next
case (Cons xy xys)
show ?case
proof (cases xy)

case (Pair x y)
with Cons have x > y by auto
then obtain d1 where d1 = x − y and d1pos: d1 > 0 and d1 ≤ x − y by

auto
hence xy: delta-gt d1 x y unfolding delta-gt-def by auto
from Cons obtain d2 where d2pos: d2 > 0 and xys: ∀ x y. (x, y) ∈ set xys

−→ delta-gt d2 x y by auto
obtain d where d: d = min d1 d2 by auto

with d1pos d2pos xy have dpos: d > 0 and delta-gt d x y unfolding delta-gt-def
by auto

with xys d Pair have ∀ x y. (x,y) ∈ set (xy # xys) −→ delta-gt d x y unfolding
delta-gt-def by force

with dpos show ?thesis by auto
qed

qed

interpretation weak-delta-SN : weak-SN-strict-mono-ordered-semiring-1 (>) 1 delta-mono
proof

fix xysp :: (′a × ′a) list
assume orient: ∀ x y. (x,y) ∈ set xysp −→ x > y
obtain xys where xsy: xys = (1 ,0) # xysp by auto
with orient have

∧
x y. (x,y) ∈ set xys =⇒ x > y by auto

with delta-minimal-delta have ∃ δ > 0 . ∀ x y. (x,y) ∈ set xys −→ delta-gt δ x
y by auto

then obtain δ where dpos: δ > 0 and orient:
∧

x y. (x,y) ∈ set xys =⇒ delta-gt
δ x y by auto

from orient have orient1 : ∀ x y. (x,y) ∈ set xysp −→ delta-gt δ x y and orient2 :
delta-gt δ 1 0 unfolding xsy by auto

from orient2 have oned: δ ≤ 1 unfolding delta-gt-def by auto
show ∃ gt. SN-strict-mono-ordered-semiring-1 1 gt delta-mono ∧ (∀ x y. (x, y)
∈ set xysp −→ gt x y)

by (intro exI conjI , rule delta-interpretation[OF dpos oned], rule orient1)
qed

120

5.3 The standard semiring over the integers
definition int-mono :: int ⇒ bool where int-mono x ≡ x ≥ 1

instantiation int :: large-ordered-semiring-1
begin
instance
proof

fix y :: int
show ∃ x. of-nat x ≥ y

by (rule exI [of - nat y], simp)
qed (auto simp: mult-right-mono mult-left-mono mult-right-mono-neg)
end

lemma non-inf-int-gt: non-inf {(a,b :: int) . a > b} (is non-inf ?r)
by (rule non-inf-image[OF non-inf-delta-gt, of 1 - rat-of-int], auto simp: delta-gt-def)

interpretation int-SN : SN-strict-mono-ordered-semiring-1 1 (>) :: int ⇒ int ⇒
bool int-mono
proof (unfold-locales)

have [simp]:
∧

x :: int . (−1 < x) = (0 ≤ x) by auto
show SN {(x,y). y ≥ 0 ∧ (y :: int) < x}

using non-inf-imp-SN-bound[OF non-inf-int-gt, of −1] by auto
qed (auto simp: mult-strict-left-mono int-mono-def)

interpretation int-poly: poly-order-carrier 1 (>) :: int ⇒ int ⇒ bool True discrete
proof (unfold-locales)

fix x y :: int
assume ge: x ≥ y
then obtain k where k: x − y = k and kp: 0 ≤ k by auto
then obtain nk where nk: nk = nat k and k: x − y = int nk by auto
show ∃ k. x = ((+) 1 ^^ k) y
proof (rule exI [of - nk])

from k have x = int nk + y by simp
also have . . . = ((+) 1 ^^ nk) y

by (induct nk, auto)
finally show x = ((+) 1 ^^ nk) y .

qed
qed (auto simp: field-simps power-strict-mono)

5.4 The arctic semiring over the integers
plus is interpreted as max, times is interpreted as plus, 0 is -infinity, 1 is 0
datatype arctic = MinInfty | Num-arc int

instantiation arctic :: ord
begin
fun less-eq-arctic :: arctic ⇒ arctic ⇒ bool where

121

less-eq-arctic MinInfty x = True
| less-eq-arctic (Num-arc -) MinInfty = False
| less-eq-arctic (Num-arc y) (Num-arc x) = (y ≤ x)

fun less-arctic :: arctic ⇒ arctic ⇒ bool where
less-arctic MinInfty x = True
| less-arctic (Num-arc -) MinInfty = False
| less-arctic (Num-arc y) (Num-arc x) = (y < x)

instance ..
end

instantiation arctic :: ordered-semiring-1
begin
fun plus-arctic :: arctic ⇒ arctic ⇒ arctic where

plus-arctic MinInfty y = y
| plus-arctic x MinInfty = x
| plus-arctic (Num-arc x) (Num-arc y) = (Num-arc (max x y))

fun times-arctic :: arctic ⇒ arctic ⇒ arctic where
times-arctic MinInfty y = MinInfty
| times-arctic x MinInfty = MinInfty
| times-arctic (Num-arc x) (Num-arc y) = (Num-arc (x + y))

definition zero-arctic :: arctic where
zero-arctic = MinInfty

definition one-arctic :: arctic where
one-arctic = Num-arc 0

instance
proof

fix x y z :: arctic
show x + y = y + x

by (cases x, cases y, auto, cases y, auto)
show (x + y) + z = x + (y + z)

by (cases x, auto, cases y, auto, cases z, auto)
show (x ∗ y) ∗ z = x ∗ (y ∗ z)

by (cases x, auto, cases y, auto, cases z, auto)
show x ∗ 0 = 0

by (cases x, auto simp: zero-arctic-def)
show x ∗ (y + z) = x ∗ y + x ∗ z

by (cases x, auto, cases y, auto, cases z, auto)
show (x + y) ∗ z = x ∗ z + y ∗ z

by (cases x, auto, cases y, cases z, auto, cases z, auto)
show 1 ∗ x = x

by (cases x, simp-all add: one-arctic-def)
show x ∗ 1 = x

by (cases x, simp-all add: one-arctic-def)

122

show 0 + x = x
by (simp add: zero-arctic-def)

show 0 ∗ x = 0
by (simp add: zero-arctic-def)

show (0 :: arctic) 6= 1
by (simp add: zero-arctic-def one-arctic-def)

show x + 0 = x by (cases x, auto simp: zero-arctic-def)
show x ≥ x

by (cases x, auto)
show (1 :: arctic) ≥ 0

by (simp add: zero-arctic-def one-arctic-def)
show max x y = max y x unfolding max-def

by (cases x, (cases y, auto)+)
show max x y ≥ x unfolding max-def

by (cases x, (cases y, auto)+)
assume ge: x ≥ y
from ge show x + z ≥ y + z

by (cases x, cases y, cases z, auto, cases y, cases z, auto, cases z, auto)
from ge show x ∗ z ≥ y ∗ z

by (cases x, cases y, cases z, auto, cases y, cases z, auto, cases z, auto)
from ge show max x y = x unfolding max-def

by (cases x, (cases y, auto)+)
from ge show max z x ≥ max z y unfolding max-def

by (cases z, cases x, auto, cases x, (cases y, auto)+)
next

fix x y z :: arctic
assume x ≥ y and y ≥ z
thus x ≥ z

by (cases x, cases y, auto, cases y, cases z, auto, cases z, auto)
next

fix x y z :: arctic
assume y ≥ z
thus x ∗ y ≥ x ∗ z

by (cases x, cases y, cases z, auto, cases y, cases z, auto, cases z, auto)
next

fix x y z :: arctic
show x ≥ y =⇒ 0 ≥ z =⇒ y ∗ z ≥ x ∗ z

by (cases z, cases x, auto simp: zero-arctic-def)
qed
end

fun get-arctic-num :: arctic ⇒ int
where get-arctic-num (Num-arc n) = n

fun pos-arctic :: arctic ⇒ bool
where pos-arctic MinInfty = False
| pos-arctic (Num-arc n) = (0 <= n)

123

interpretation arctic-SN : SN-both-mono-ordered-semiring-1 1 (>) pos-arctic
proof

fix x y z :: arctic
assume x ≥ y and y > z
thus x > z

by (cases z, simp, cases y, simp, cases x, auto)
next

fix x y z :: arctic
assume x > y and y ≥ z
thus x > z

by (cases z, simp, cases y, simp, cases x, auto)
next

fix x y z :: arctic
assume x > y
thus x ≥ y

by (cases x, (cases y, auto)+)
next

fix x y z u :: arctic
assume x > y and z > u
thus x + z > y + u

by (cases y, cases u, simp, cases z, auto, cases x, auto, cases u, auto, cases z ,
auto, cases x, auto, cases x, auto, cases z, auto, cases x, auto)
next

fix x y z :: arctic
assume x > y
thus x ∗ z > y ∗ z

by (cases y, simp, cases z, simp, cases x, auto)
next

fix x :: arctic
assume 0 > x
thus x = 0

by (cases x, auto simp: zero-arctic-def)
next

fix x :: arctic
show pos-arctic 1 unfolding one-arctic-def by simp
show x > 0 unfolding zero-arctic-def by simp
show (1 :: arctic) ≥ 0 unfolding zero-arctic-def by simp
show x ≥ 0 unfolding zero-arctic-def by simp
show ¬ pos-arctic 0 unfolding zero-arctic-def by simp

next
fix x y
assume pos-arctic x
thus pos-arctic (x + y) by (cases x, simp, cases y, auto)

next
fix x y
assume pos-arctic x and pos-arctic y
thus pos-arctic (x ∗ y) by (cases x, simp, cases y, auto)

next

124

show SN {(x,y). pos-arctic y ∧ x > y} (is SN ?rel)
proof − {

fix x
assume ∃ f . f 0 = x ∧ (∀ i. (f i, f (Suc i)) ∈ ?rel)
from this obtain f where f 0 = x and seq: ∀ i. (f i, f (Suc i)) ∈ ?rel by

auto
from seq have steps: ∀ i. f i > f (Suc i) ∧ pos-arctic (f (Suc i)) by auto
let ?g = λ i. get-arctic-num (f i)
have ∀ i. ?g (Suc i) ≥ 0 ∧ ?g i > ?g (Suc i)
proof

fix i
from steps have i: f i > f (Suc i) ∧ pos-arctic (f (Suc i)) by auto
from i obtain n where fi: f i = Num-arc n by (cases f (Suc i), simp, cases

f i, auto)
from i obtain m where fsi: f (Suc i) = Num-arc m by (cases f (Suc i),

auto)
with i have gz: 0 ≤ m by simp
from i fi fsi have n > m by auto
with fi fsi gz
show ?g (Suc i) ≥ 0 ∧ ?g i > ?g (Suc i) by auto

qed
from this obtain g where ∀ i. g (Suc i) ≥ 0 ∧ ((>) :: int ⇒ int ⇒ bool) (g

i) (g (Suc i)) by auto
hence ∃ f . f 0 = g 0 ∧ (∀ i. (f i, f (Suc i)) ∈ {(x,y). y ≥ 0 ∧ x > y}) by

auto
with int-SN .SN have False unfolding SN-defs by auto

}
thus ?thesis unfolding SN-defs by auto
qed

next
fix y z x :: arctic
assume y > z
thus x ∗ y > x ∗ z

by (cases x, simp, cases z, simp, cases y, auto)
next

fix c d
assume pos-arctic d
then obtain n where d: d = Num-arc n and n: 0 ≤ n

by (cases d, auto)
show ∃ e. e ≥ 0 ∧ pos-arctic e ∧ ¬ c ≥ d ∗ e
proof (cases c)

case MinInfty
show ?thesis

by (rule exI [of - Num-arc 0],
unfold d MinInfty zero-arctic-def , simp)

next
case (Num-arc m)
show ?thesis

by (rule exI [of - Num-arc (abs m + 1)], insert n,

125

unfold d Num-arc zero-arctic-def , simp)
qed

qed

5.5 The arctic semiring over an arbitrary archimedean field
completely analogous to the integers, where one has to use delta-orderings
datatype ′a arctic-delta = MinInfty-delta | Num-arc-delta ′a

instantiation arctic-delta :: (ord) ord
begin
fun less-eq-arctic-delta :: ′a arctic-delta ⇒ ′a arctic-delta ⇒ bool where

less-eq-arctic-delta MinInfty-delta x = True
| less-eq-arctic-delta (Num-arc-delta -) MinInfty-delta = False
| less-eq-arctic-delta (Num-arc-delta y) (Num-arc-delta x) = (y ≤ x)

fun less-arctic-delta :: ′a arctic-delta ⇒ ′a arctic-delta ⇒ bool where
less-arctic-delta MinInfty-delta x = True
| less-arctic-delta (Num-arc-delta -) MinInfty-delta = False
| less-arctic-delta (Num-arc-delta y) (Num-arc-delta x) = (y < x)

instance ..
end

instantiation arctic-delta :: (linordered-field) ordered-semiring-1
begin
fun plus-arctic-delta :: ′a arctic-delta ⇒ ′a arctic-delta ⇒ ′a arctic-delta where

plus-arctic-delta MinInfty-delta y = y
| plus-arctic-delta x MinInfty-delta = x
| plus-arctic-delta (Num-arc-delta x) (Num-arc-delta y) = (Num-arc-delta (max x
y))

fun times-arctic-delta :: ′a arctic-delta ⇒ ′a arctic-delta ⇒ ′a arctic-delta where
times-arctic-delta MinInfty-delta y = MinInfty-delta
| times-arctic-delta x MinInfty-delta = MinInfty-delta
| times-arctic-delta (Num-arc-delta x) (Num-arc-delta y) = (Num-arc-delta (x +
y))

definition zero-arctic-delta :: ′a arctic-delta where
zero-arctic-delta = MinInfty-delta

definition one-arctic-delta :: ′a arctic-delta where
one-arctic-delta = Num-arc-delta 0

instance
proof

fix x y z :: ′a arctic-delta
show x + y = y + x

by (cases x, cases y, auto, cases y, auto)

126

show (x + y) + z = x + (y + z)
by (cases x, auto, cases y, auto, cases z, auto)

show (x ∗ y) ∗ z = x ∗ (y ∗ z)
by (cases x, auto, cases y, auto, cases z, auto)

show x ∗ 0 = 0
by (cases x, auto simp: zero-arctic-delta-def)

show x ∗ (y + z) = x ∗ y + x ∗ z
by (cases x, auto, cases y, auto, cases z, auto)

show (x + y) ∗ z = x ∗ z + y ∗ z
by (cases x, auto, cases y, cases z, auto, cases z, auto)

show 1 ∗ x = x
by (cases x, simp-all add: one-arctic-delta-def)

show x ∗ 1 = x
by (cases x, simp-all add: one-arctic-delta-def)

show 0 + x = x
by (simp add: zero-arctic-delta-def)

show 0 ∗ x = 0
by (simp add: zero-arctic-delta-def)

show (0 :: ′a arctic-delta) 6= 1
by (simp add: zero-arctic-delta-def one-arctic-delta-def)

show x + 0 = x by (cases x, auto simp: zero-arctic-delta-def)
show x ≥ x

by (cases x, auto)
show (1 :: ′a arctic-delta) ≥ 0

by (simp add: zero-arctic-delta-def one-arctic-delta-def)
show max x y = max y x unfolding max-def

by (cases x, (cases y, auto)+)
show max x y ≥ x unfolding max-def

by (cases x, (cases y, auto)+)
assume ge: x ≥ y
from ge show x + z ≥ y + z

by (cases x, cases y, cases z, auto, cases y, cases z, auto, cases z, auto)
from ge show x ∗ z ≥ y ∗ z

by (cases x, cases y, cases z, auto, cases y, cases z, auto, cases z, auto)
from ge show max x y = x unfolding max-def

by (cases x, (cases y, auto)+)
from ge show max z x ≥ max z y unfolding max-def

by (cases z, cases x, auto, cases x, (cases y, auto)+)
next

fix x y z :: ′a arctic-delta
assume x ≥ y and y ≥ z
thus x ≥ z

by (cases x, cases y, auto, cases y, cases z, auto, cases z, auto)
next

fix x y z :: ′a arctic-delta
assume y ≥ z
thus x ∗ y ≥ x ∗ z

by (cases x, cases y, cases z, auto, cases y, cases z, auto, cases z, auto)
next

127

fix x y z :: ′a arctic-delta
show x ≥ y =⇒ 0 ≥ z =⇒ y ∗ z ≥ x ∗ z

by (cases z, cases x, auto simp: zero-arctic-delta-def)
qed
end

x >d y is interpreted as y = -inf or (x,y != -inf and x >d y)
fun gt-arctic-delta :: ′a :: floor-ceiling ⇒ ′a arctic-delta ⇒ ′a arctic-delta ⇒ bool
where gt-arctic-delta δ - MinInfty-delta = True
| gt-arctic-delta δ MinInfty-delta (Num-arc-delta -) = False
| gt-arctic-delta δ (Num-arc-delta x) (Num-arc-delta y) = delta-gt δ x y

fun get-arctic-delta-num :: ′a arctic-delta ⇒ ′a
where get-arctic-delta-num (Num-arc-delta n) = n

fun pos-arctic-delta :: (′a :: floor-ceiling) arctic-delta ⇒ bool
where pos-arctic-delta MinInfty-delta = False
| pos-arctic-delta (Num-arc-delta n) = (0 ≤ n)

lemma arctic-delta-interpretation: assumes dpos: δ > 0 shows SN-both-mono-ordered-semiring-1
1 (gt-arctic-delta δ) pos-arctic-delta
proof −
from delta-interpretation[OF dpos] interpret SN-strict-mono-ordered-semiring-1

δ delta-gt δ delta-mono by simp
show ?thesis
proof

fix x y z :: ′a arctic-delta
assume x ≥ y and gt-arctic-delta δ y z
thus gt-arctic-delta δ x z

by (cases z, simp, cases y, simp, cases x, simp, simp add: compat)
next

fix x y z :: ′a arctic-delta
assume gt-arctic-delta δ x y and y ≥ z
thus gt-arctic-delta δ x z

by (cases z, simp, cases y, simp, cases x, simp, simp add: compat2)
next

fix x y :: ′a arctic-delta
assume gt-arctic-delta δ x y
thus x ≥ y

by (cases x, insert dpos, (cases y, auto simp: delta-gt-def)+)
next

fix x y z u
assume gt-arctic-delta δ x y and gt-arctic-delta δ z u
thus gt-arctic-delta δ (x + z) (y + u)
by (cases y, cases u, simp, cases z, simp, cases x, simp, simp add: delta-gt-def ,

cases z, cases x, simp, cases u, simp, simp, cases x, simp, cases z, simp,
cases u, simp add: delta-gt-def , simp add: delta-gt-def)

128

next
fix x y z
assume gt-arctic-delta δ x y
thus gt-arctic-delta δ (x ∗ z) (y ∗ z)

by (cases y, simp, cases z, simp, cases x, simp, simp add: plus-gt-left-mono)
next

fix x
assume gt-arctic-delta δ 0 x
thus x = 0

by (cases x, auto simp: zero-arctic-delta-def)
next

fix x
show pos-arctic-delta 1 unfolding one-arctic-delta-def by simp
show gt-arctic-delta δ x 0 unfolding zero-arctic-delta-def by simp
show (1 :: ′a arctic-delta) ≥ 0 unfolding zero-arctic-delta-def by simp
show x ≥ 0 unfolding zero-arctic-delta-def by simp
show ¬ pos-arctic-delta 0 unfolding zero-arctic-delta-def by simp

next
fix x y :: ′a arctic-delta
assume pos-arctic-delta x
thus pos-arctic-delta (x + y) by (cases x, simp, cases y, auto)

next
fix x y :: ′a arctic-delta
assume pos-arctic-delta x and pos-arctic-delta y
thus pos-arctic-delta (x ∗ y) by (cases x, simp, cases y, auto)

next
show SN {(x,y). pos-arctic-delta y ∧ gt-arctic-delta δ x y} (is SN ?rel)
proof − {

fix x
assume ∃ f . f 0 = x ∧ (∀ i. (f i, f (Suc i)) ∈ ?rel)
from this obtain f where f 0 = x and seq: ∀ i. (f i, f (Suc i)) ∈ ?rel by

auto
from seq have steps: ∀ i. gt-arctic-delta δ (f i) (f (Suc i)) ∧ pos-arctic-delta

(f (Suc i)) by auto
let ?g = λ i. get-arctic-delta-num (f i)
have ∀ i. ?g (Suc i) ≥ 0 ∧ delta-gt δ (?g i) (?g (Suc i))
proof

fix i
from steps have i: gt-arctic-delta δ (f i) (f (Suc i)) ∧ pos-arctic-delta (f

(Suc i)) by auto
from i obtain n where fi: f i = Num-arc-delta n by (cases f (Suc i), simp,

cases f i, auto)
from i obtain m where fsi: f (Suc i) = Num-arc-delta m by (cases f (Suc

i), auto)
with i have gz: 0 ≤ m by simp
from i fi fsi have delta-gt δ n m by auto
with fi fsi gz
show ?g (Suc i) ≥ 0 ∧ delta-gt δ (?g i) (?g (Suc i)) by auto

qed

129

from this obtain g where ∀ i. g (Suc i) ≥ 0 ∧ delta-gt δ (g i) (g (Suc i))
by auto

hence ∃ f . f 0 = g 0 ∧ (∀ i. (f i, f (Suc i)) ∈ {(x,y). y ≥ 0 ∧ delta-gt δ x
y}) by auto

with SN have False unfolding SN-defs by auto
}
thus ?thesis unfolding SN-defs by auto
qed

next
fix c d :: ′a arctic-delta
assume pos-arctic-delta d
then obtain n where d: d = Num-arc-delta n and n: 0 ≤ n

by (cases d, auto)
show ∃ e. e ≥ 0 ∧ pos-arctic-delta e ∧ ¬ c ≥ d ∗ e
proof (cases c)

case MinInfty-delta
show ?thesis

by (rule exI [of - Num-arc-delta 0],
unfold d MinInfty-delta zero-arctic-delta-def , simp)

next
case (Num-arc-delta m)
show ?thesis

by (rule exI [of - Num-arc-delta (abs m + 1)], insert n,
unfold d Num-arc-delta zero-arctic-delta-def , simp)

qed
next

fix x y z
assume gt: gt-arctic-delta δ y z
{

fix x y z
assume gt: delta-gt δ y z
have delta-gt δ (x + y) (x + z)

using plus-gt-left-mono[OF gt] by (auto simp: field-simps)
}
with gt show gt-arctic-delta δ (x ∗ y) (x ∗ z)

by (cases x, simp, cases z, simp, cases y, simp-all)
qed

qed

fun weak-gt-arctic-delta :: (′a :: floor-ceiling) arctic-delta ⇒ ′a arctic-delta ⇒ bool
where weak-gt-arctic-delta - MinInfty-delta = True
| weak-gt-arctic-delta MinInfty-delta (Num-arc-delta -) = False
| weak-gt-arctic-delta (Num-arc-delta x) (Num-arc-delta y) = (x > y)

interpretation weak-arctic-delta-SN : weak-SN-both-mono-ordered-semiring-1 weak-gt-arctic-delta
1 pos-arctic-delta
proof

fix xys
assume orient: ∀ x y. (x,y) ∈ set xys −→ weak-gt-arctic-delta x y

130

obtain xysp where xysp: xysp = map (λ (ax, ay). (case ax of Num-arc-delta x
⇒ x , case ay of Num-arc-delta y ⇒ y)) (filter (λ (ax,ay). ax 6= MinInfty-delta ∧
ay 6= MinInfty-delta) xys)

(is - = map ?f -)
by auto

have ∀ x y. (x,y) ∈ set xysp −→ x > y
proof (intro allI impI)

fix x y
assume (x,y) ∈ set xysp
with xysp obtain ax ay where (ax,ay) ∈ set xys and ax 6= MinInfty-delta

and ay 6= MinInfty-delta and (x,y) = ?f (ax,ay) by auto
hence (Num-arc-delta x, Num-arc-delta y) ∈ set xys by (cases ax, simp, cases

ay, auto)
with orient show x > y by force

qed
with delta-minimal-delta[of xysp] obtain δ where dpos: δ > 0 and orient2 :

∧
x y. (x, y) ∈ set xysp =⇒ delta-gt δ x y by auto

have orient: ∀ x y. (x,y) ∈ set xys −→ gt-arctic-delta δ x y
proof(intro allI impI)

fix ax ay
assume axay: (ax,ay) ∈ set xys
with orient have orient: weak-gt-arctic-delta ax ay by auto
show gt-arctic-delta δ ax ay
proof (cases ay, simp)

case (Num-arc-delta y) note ay = this
show ?thesis
proof (cases ax)

case MinInfty-delta
with ay orient show ?thesis by auto

next
case (Num-arc-delta x) note ax = this
from ax ay axay have (x,y) ∈ set xysp unfolding xysp by force
from ax ay orient2 [OF this] show ?thesis by simp

qed
qed

qed
show ∃ gt. SN-both-mono-ordered-semiring-1 1 gt pos-arctic-delta ∧ (∀ x y. (x, y)
∈ set xys −→ gt x y)

by (intro exI conjI , rule arctic-delta-interpretation[OF dpos], rule orient)
qed

end

References
[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge

University Press, Aug. 1999.

131

[2] C. Sternagel. Automatic Certification of Termination Proofs. PhD the-
sis, University of Innsbruck, Institute of Computer Science, 2010. not
finished yet.

[3] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors,
22nd International Conference on Theorem Proving in Higher Order Log-
ics, TPHOLs 2009, pages 452–468. Springer, 2009.

132

	Infinite Sequences
	Operations on Infinite Sequences
	Predicates on Natural Numbers
	Assembling Infinite Words from Finite Words

	Abstract Rewrite Systems
	Definitions
	Properties of ARSs
	Newman's Lemma
	Commutation
	Strong Normalization
	Terminating part of a relation

	Relative Rewriting
	Strongly Normalizing Orders
	Carriers of Strongly Normalizing Orders
	The standard semiring over the naturals
	The standard semiring over the Archimedean fields using delta-orderings
	The standard semiring over the integers
	The arctic semiring over the integers
	The arctic semiring over an arbitrary archimedean field

